3 resultados para air transport
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Scientific collections are important sources of material for many areas of ornithological research. Although firearms (particularly shotguns) have been the standard for avian scientific collecting for more than 100 years, their use is restricted in many areas of the world. We describe a cheap, relatively silent, and effective air shotgun for collecting birds weighing up to 50 g at distances up to 4 m. This air shotgun is capable of shooting birdshot, uses hollow metal rivets connected to plastic straws as shot shells, and represents a simple adaptation of any 0.177 or 0.22 cal single-shot, break-barrel air rifle with at least 25 joules of muzzle energy. This air shotgun will be especially useful for focused sampling of birds (and other small vertebrates) in situations where firearm use or transport is restricted.
Resumo:
On the moderately complex terrain covered by dense tropical Amazon Rainforest (Reserva Biologica do Cuieiras-ZF2-02 degrees 36'17.1 '' S, 60 degrees 12'24.4 '' W), subcanopy horizontal and vertical gradients of the air temperature, CO2 concentration and wind field were measured for the dry and wet periods in 2006. We tested the hypothesis that horizontal drainage flow over this study area is significant and can affect the interpretation of the high carbon uptake rates reported by previous works at this site. A similar experimental design as the one by Tota et al. (2008) was used with a network of wind, air temperature, and CO2 sensors above and below the forest canopy. A persistent and systematic subcanopy nighttime upslope (positive buoyancy) and daytime downslope (negative buoyancy) flow pattern on a moderately inclined slope (12%) was observed. The microcirculations observed above the canopy (38 m) over the sloping area during nighttime presents a downward motion indicating vertical convergence and correspondent horizontal divergence toward the valley area. During the daytime an inverse pattern was observed. The microcirculations above the canopy were driven mainly by buoyancy balancing the pressure gradient forces. In the subcanopy space the microcirculations were also driven by the same physical mechanisms but probably with the stress forcing contribution. The results also indicated that the horizontal and vertical scalar gradients (e. g., CO2) were modulated by these micro-circulations above and below the canopy, suggesting that estimates of advection using previous experimental approaches are not appropriate due to the tridimensional nature of the vertical and horizontal transport locally. This work also indicates that carbon budget from tower-based measurement is not enough to close the system, and one needs to include horizontal and vertical advection transport of CO2 into those estimates.
Resumo:
The aim of this work is to determine the interaction in terms of ozone transport between two metropolitan regions of São Paulo State: The Metropolitan Region of Campinas (MRC) and Metropolitan Region of São Paulo (MRSP), with different characteristics and dimensions. In order to describe the interaction between both regions, 3-D Eulerian photochemical CIT model was used with a new approach for São Paulo regions since most previous studies deal with individual areas considering the contribution of other areas only as boundary conditions. The results from the photochemical simulations showed that the ozone concentration in the MRC is associated to local emissions and the transport of ozone and its precursors from the MRSP, demonstrating the significant impact of a megacity in its neighborhood and the importance of meteorological and topography conditions in the transport of air pollutants from the local source to distant regions.