6 resultados para aggregate uncertainty.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Purpose: To investigate the periapical tissue response of 4 different retrograde root-filling materials, ie, intermediate restorative material, thermoplasticized gutta-percha, reinforced zinc oxide cement (Super-EBA), and mineral trioxide aggregate (MTA), in conjunction with an ultrasonic root-end preparation technique in an animal model. Materials and Methods: Vital roots of the third and fourth right mandibular premolars in 6 healthy mongrel dogs were apicectomized and sealed with 1 of the materials using a standardized surgical procedure. After 120 days, the animals were sacrificed and the specimens were analyzed radiologically, histologically, and scanning electron microscopically. The Fisher exact test was performed on the 2 outcome values. Results: Twenty-three sections were analyzed histologically. Evaluation showed better re-establishment of the periapical tissues and generally lower inflammatory infiltration in the sections from teeth treated with the intermediate restorative material and the MTA. New root cement on the resected dentin surfaces was seen on all sections regardless of the used material. New hard tissue formation, directly on the surface of the material, was seen only in the MTA sections. There was no statistical difference in outcome among the tested materials. Conclusions: The results from this dog model favor the intermediate restorative material and MTA as retrograde fillings when evaluating the bone defect regeneration. MTA has the most favorable periapical tissue response when comparing the biocompatibility of the materials tested. (C) 2012 American Association of Oral and Maxillofacial Surgeons J Oral Maxillofac Surg 70:2041-2047, 2012
Resumo:
Categorical data cannot be interpolated directly because they are outcomes of discrete random variables. Thus, types of categorical variables are transformed into indicator functions that can be handled by interpolation methods. Interpolated indicator values are then backtransformed to the original types of categorical variables. However, aspects such as variability and uncertainty of interpolated values of categorical data have never been considered. In this paper we show that the interpolation variance can be used to map an uncertainty zone around boundaries between types of categorical variables. Moreover, it is shown that the interpolation variance is a component of the total variance of the categorical variables, as measured by the coefficient of unalikeability. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Introduction: The aim of this study was to evaluate the pH, calcium ion release, setting time, and solubility of white mineral trioxide aggregate (WMTA) and white Portland cement (WPC) combined with the following radiopacifying agents: bismuth oxide (BO), calcium tungstate (CT), and zirconium oxide (ZO). Methods: Fifty acrylic teeth with root-end filling material were immersed in ultrapure water for measurement of pH and calcium release (atomic absorption spectrophotometry) at 3, 24, 72, and 168 hours. For evaluation of setting time, each material was analyzed according to the American Society for Testing and Materials guidelines 266/08. The solubility test was performed according to American National Standards Institute/American Dental Association specification no. 57/2000. Solubility, setting time, and pH values were compared by using analysis of variance and Tukey test, and the values of calcium release were compared by the Kruskal-Wallis and Miller tests. The significance level was set at 5%. Results: The pH and calcium release were higher at 3 and 24 hours. WPC was the material with the higher values for both properties. WMTA had the greatest solubility among all materials (P < .05). All radiopacifiers increased the setting time of WPC, and WMTA had the shortest setting time among all materials (P < .05). Conclusions: All materials released calcium ions. Except for WPC/CT at 168 hours, all materials promoted an alkaline pH. On the basis of the obtained results, ZO and CT can be considered as potential radiopacifying agents to be used in combination with Portland cement. (J Endod 2012;38:394-397)
Resumo:
Duarte MAH, Alves de Aguiar K, Zeferino MA, Vivan RR, Ordinola-Zapata R, Tanomaru-Filho M, Weckwerth PH, Kuga MC. Evaluation of the propylene glycol association on some physical and chemical properties of mineral trioxide aggregate. International Endodontic Journal, 45, 565570, 2012. Abstract Aim To evaluate the influence of propylene glycol (PG) on the flowability, setting time, pH and calcium ion release of mineral trioxide aggregate (MTA). Methodology Mineral trioxide aggregate was mixed with different proportions of PG, as follows: group 1: MTA + 100% distilled water (DW); group 2: MTA + 80% DW and 20% PG; group 3: MTA + 50% DW and 50% PG; group 4: MTA + 20% DW and 80% PG; group 5: MTA + 100% PG. The ANSI/ADA No. 57 was followed for evaluating the flowability and the setting time was measured by using ASTM C266-08. For pH and calcium release analyses, 50 acrylic teeth with root-end cavities were filled with the materials (n = 10) and individually immersed in flasks containing 10 mL deionized water. After 3 h, 24 h, 72 h and 168 h, teeth were placed in new flasks and the water in which each specimen was immersed had its pH determined by a pH metre and the calcium release measured by an atomic absorption spectrophotometer with a calcium-specific hollow cathode lamp. Data were analysed by using one-way anova test for global comparison and by using Tukeys test for individual comparisons. Results The highest value of flowability was observed with MTA + 20% DW and 80% PG and the lowest values were found with MTA + 100% DW. They were significantly different compared to the other groups (P < 0.05). The presence of PG did not affect the pH and calcium release. The MTA + 100% PG favoured the highest (P < 0.05) pH and calcium release after 3 h. Increasing the PG proportion interfered (P < 0.05) with the setting time; when used at the volume of 100% setting did not occur. Conclusion The addition of PG to MTA-Angelus increased its setting time, improved flowability and increased the pH and calcium ion release during the initial post-mixing periods. The ratio of 80% DW 20% PG is recommended.
Resumo:
In this paper, the effects of uncertainty and expected costs of failure on optimum structural design are investigated, by comparing three distinct formulations of structural optimization problems. Deterministic Design Optimization (DDO) allows one the find the shape or configuration of a structure that is optimum in terms of mechanics, but the formulation grossly neglects parameter uncertainty and its effects on structural safety. Reliability-based Design Optimization (RBDO) has emerged as an alternative to properly model the safety-under-uncertainty part of the problem. With RBDO, one can ensure that a minimum (and measurable) level of safety is achieved by the optimum structure. However, results are dependent on the failure probabilities used as constraints in the analysis. Risk optimization (RO) increases the scope of the problem by addressing the compromising goals of economy and safety. This is accomplished by quantifying the monetary consequences of failure, as well as the costs associated with construction, operation and maintenance. RO yields the optimum topology and the optimum point of balance between economy and safety. Results are compared for some example problems. The broader RO solution is found first, and optimum results are used as constraints in DDO and RBDO. Results show that even when optimum safety coefficients are used as constraints in DDO, the formulation leads to configurations which respect these design constraints, reduce manufacturing costs but increase total expected costs (including expected costs of failure). When (optimum) system failure probability is used as a constraint in RBDO, this solution also reduces manufacturing costs but by increasing total expected costs. This happens when the costs associated with different failure modes are distinct. Hence, a general equivalence between the formulations cannot be established. Optimum structural design considering expected costs of failure cannot be controlled solely by safety factors nor by failure probability constraints, but will depend on actual structural configuration. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The strength and durability of materials produced from aggregates (e.g., concrete bricks, concrete, and ballast) are critically affected by the weathering of the particles, which is closely related to their mineral composition. It is possible to infer the degree of weathering from visual features derived from the surface of the aggregates. By using sound pattern recognition methods, this study shows that the characterization of the visual texture of particles, performed by using texture-related features of gray scale images, allows the effective differentiation between weathered and nonweathered aggregates. The selection of the most discriminative features is also performed by taking into account a feature ranking method. The evaluation of the methodology in the presence of noise suggests that it can be used in stone quarries for automatic detection of weathered materials.