2 resultados para active-reactive OPF
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The purpose of this study was to examine the relationship between cardiac autonomic control derived from heart rate variability (HRV), high-sensitivity C-reactive protein (hs-CRP) and physical activity (PA) levels measured using accelerometers. A total of 80 healthy university students volunteered to participate in this study (20.56 +/- 0.82 years, 1.36 +/- 1.5 mg/L of hs-CRP). The participants were divided into groups based on tertiles of hs-CRP. Analysis of covariance adjusted to PA was used to assess group differences in HRV. Associations between hs-CRP, HRV indices and PA were analyzed using Pearson's correlation. The participants at the highest tertile of hs-CRP (tertile 3) had lower cardiac vagal modulation (SDNN, tertile 1=78.05 +/- 5.9,tertile 2=82.43 +/- 5.9,tertile 3=56.03 +/- 6.1; SD1, tertile 1=61.27 +/- 5.3, tertile 2=62.93 +/- 5.4, tertile 3=40.03 +/- 5.5). In addition, vagal indices were inversely correlated with hs-CRP but positively correlated with PA (SDNN r=-0.320, SD1 r=-0.377; SDNN r=0.304, SD1 r=0.299; P<0.05). Furthermore, the most physically active subjects had lower levels of hs-CRP and the highest levels of vagal modulation.
Resumo:
High fat diets and accompanying hepatic steatosis are highly prevalent conditions. Previous work has shown that steatosis is accompanied by enhanced generation of reactive oxygen species (ROS), which may mediate further liver damage. Here we investigated mechanisms leading to enhanced ROS generation following high fat diets (HFD). We found that mitochondria from HFD livers present no differences in maximal respiratory rates and coupling, but generate more ROS specifically when fatty acids are used as substrates. Indeed, many acyl-CoA dehydrogenase isoforms were found to be more highly expressed in HFD livers, although only the very long chain acyl-CoA dehydrogenase (VLCAD) was more functionally active. Studies conducted with permeabilized mitochondria and different chain length acyl-CoA derivatives suggest that VLCAD is also a source of ROS production in mitochondria of HFD animals. This production is stimulated by the lack of NAD+. Overall, our studies uncover VLCAD as a novel, diet-sensitive, source of mitochondrial ROS.