11 resultados para ZERO-FIELD SPLITTING
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
A mixed-valence complex, [Fe(III)Fe(II)L1(mu-OAc)(2)]BF4 center dot H2O, where the ligand H(2)L1 = 2-{[[3-[((bis-(pyridin-2-ylmethyl)amino)methyl)-2-hydroxy-5-methylbenzyl](pyridin-2-ylmethyl)amino]methyl]phenol}, has been studied with a range of techniques, and, where possible, its properties have been compared to those of the corresponding enzyme system purple acid phosphatase. The (FeFeII)-Fe-III and Fe-2(III) oxidized species were studied spectroelectrochemically. The temperature-dependent population of the S = 3/2 spin states of the heterovalent system, observed using magnetic circular dichroism, confirmed that the dinuclear center is weakly antiferromagnetically coupled (H = -2JS(1).S-2, where J = -5.6 cm(-1)) in a frozen solution. The ligand-to-metal charge-transfer transitions are correlated with density functional theory calculations. The (FeFeII)-Fe-III complex is electron paramagnetic resonance (EPR)-silent, except at very low temperatures (<2 K), because of the broadening caused by the exchange coupling and zero-field-splitting parameters being of comparable magnitude and rapid spin-lattice relaxation. However, a phosphate-bound Fe-2(III) complex showed an EPR spectrum due to population of the S-tot = 3 state (J= -3.5 cm(-1)). The phosphatase activity of the (FeFeII)-Fe-III complex in hydrolysis of bis(2,4-dinitrophenyl)phosphate (k(cat.) = 1.88 x 10(-3) s(-1); K-m = 4.63 x 10(-3) mol L-1) is similar to that of other bimetallic heterovalent complexes with the same ligand. Analysis of the kinetic data supports a mechanism where the initiating nucleophile in the phosphatase reaction is a hydroxide, terminally bound to Fe-III. It is interesting to note that aqueous solutions of [Fe(III)Fe(II)L1(mu-OAc)(2)](+) are also capable of protein cleavage, at mild temperature and pH conditions, thus further expanding the scope of this complex's catalytic promiscuity.
Resumo:
The magnetic susceptibility of Pb(1-x)Ce(x)A (A=S, Se and Te) crystals with Ce3+ concentrations 0.006 <= x <= 0.036 was investigated in the temperature range from 2 K to 300 K. The magnetic susceptibility data was found to be consistent with a E-2(5/2) lowest manifold for Ce3+ ions with a crystal-field splitting Delta=E(Gamma(8))-E(Gamma(7)) of about 340 K, 440 K and 540 K for Pb1-xCexTe, Pb1-xCexSe, and Pb1-xCexS, respectively. For all the three compounds the doublet Gamma(7) lies below the Gamma(8) quadruplet which confirms the substitution of Pb2+ by Ce3+ ions in the host crystals. The observed values for the crystal-field splitting are in good agreement with the calculated ones based on the point-charge model. Moreover, the effective Lande factors were determined by X-band (similar to 9.5 GHz), electron paramagnetic measurements (EPR) to be g=1.333, 1.364, and 1.402 for Ce ions in PbA, A = S. Se and Te, respectively. The small difference with the predicted Lande factor g of 10/7 for the Gamma(7) (J=5/2) ground state was attributed to crystal-field admixture. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This study presents the first archeointensity results from Northeast Brazil obtained from 14 groups of architectural brick fragments sampled in the city of Salvador, Bahia State (13 degrees S, 38.5 degrees W) and dated between the middle of the XVIth century and the beginning of the XIXth century. The dating is ascertained by historical documents complemented by archeological constraints, yielding in all cases age uncertainties of less than 50 years. Analyses were carried out using two experimental protocols: 1 the ""zero field-in field"" version of the classical Thellier and Thellier method as proposed by Coe (TT-ZI), including partial thermoremanent magnetization (pTRM) and pTRM-tail checks, and 2 the Triaxe procedure involving continuous high temperature magnetization measurements. Both TRM anisotropy and cooling rate effects were taken into account for the intensity determinations. The cooling rate effect was further explored for the TT-ZI protocol using three increasing slow cooling times (5 h, 10 h and 25 h) between 450 C and room temperature. Following archeological constraints, the slowest cooling time was retained in our study, yielding decreases of the raw intensity values by 4% to 14%. For each fragment, a mean intensity was computed and retained only when the data obtained from all specimens (between 2 and 6) satisfied a coherence test at similar to 5%. A total of 57 fragments (183 specimens) was considered for the computations of site-mean intensity values, with derived standard deviations of less than 8% of the corresponding means. When separately computed using the two experimental techniques, the site-mean intensity values always agree to within 5%. A good consistency is observed between intensity values of similar or close ages, which strengthen their reliability. Our data principally show a significant and continuous decrease in geomagnetic field intensity in Northeast Brazil between the first half of the XVIIth century and the XXth century. One result dated to the second half of the XVIth century further suggests that the geomagnetic field intensity reached a maximum around 1600 AD. This evolution is in good agreement with that expected in the city of Salvador from the available global geomagnetic field models. However, the accuracy of these models appears less well constrained between similar to 1550 AD and similar to 1650 AD. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Nickel oxide nonoparticles successfully synthesized by a polymer percursor method are studied in this work. The analysis of X-ray powder diffraction data provides a mean crystallite size of 22 +/- 2 nm which is in a good agreement with the mean size estimated from transmission electron microscopy images. Whereas the magnetization (M) vs. magnetic field (H) curve obtained at 5 K is consistent with a ferromagnetic component which coexists with an antiferromagnetic component, the presence of two peaks in the zero-field-cooled trace suggests the occurrence of two blocking process. The broad maximum at high temperature was associated with the thermal relaxation of uncompensated spins at the particle core and the low temperature peak was assigned to the freeze of surface spins clusters. Static and dynamic magnetic results suggest that the correlations of surface spins clusters show a spin-glass-like below T-g = 7.3 +/- 0.1 K with critical exponents zv = 9.7 +/- 0.5 and beta = 0.7 +/- 0.1, which are consistent with typical reported for spin-glass systems. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We report on the measurements of both vertical and lateral levitation forces between a permanent magnet NdFeB and a polycrystalline YBa4Cu6O7-delta superconductor. The analysis of the obtained results revealed an interesting correlation between the behavior of the forces in the field-cooled and zero-field-cooled regimes, resembling the structure of the so-called susceptibility spectrum chi ''(chi'). Such force-force diagrams can be useful for identifying flux distribution structure inside a superconducting material. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4743006]
Resumo:
The low-temperature states of bosonic fluids exhibit fundamental quantum effects at the macroscopic scale: the best-known examples are Bose-Einstein condensation and superfluidity, which have been tested experimentally in a variety of different systems. When bosons interact, disorder can destroy condensation, leading to a 'Bose glass'. This phase has been very elusive in experiments owing to the absence of any broken symmetry and to the simultaneous absence of a finite energy gap in the spectrum. Here we report the observation of a Bose glass of field-induced magnetic quasiparticles in a doped quantum magnet (bromine-doped dichloro-tetrakis-thiourea-nickel, DTN). The physics of DTN in a magnetic field is equivalent to that of a lattice gas of bosons in the grand canonical ensemble; bromine doping introduces disorder into the hopping and interaction strength of the bosons, leading to their localization into a Bose glass down to zero field, where it becomes an incompressible Mott glass. The transition from the Bose glass (corresponding to a gapless spin liquid) to the Bose-Einstein condensate (corresponding to a magnetically ordered phase) is marked by a universal exponent that governs the scaling of the critical temperature with the applied field, in excellent agreement with theoretical predictions. Our study represents a quantitative experimental account of the universal features of disordered bosons in the grand canonical ensemble.
Resumo:
The study of the effects of spatially uniform fields on the steady-state properties of Axelrod's model has yielded plenty of counterintuitive results. Here, we reexamine the impact of this type of field for a selection of parameters such that the field-free steady state of the model is heterogeneous or multicultural. Analyses of both one- and two-dimensional versions of Axelrod's model indicate that the steady state remains heterogeneous regardless of the value of the field strength. Turning on the field leads to a discontinuous decrease on the number of cultural domains, which we argue is due to the instability of zero-field heterogeneous absorbing configurations. We find, however, that spatially nonuniform fields that implement a consensus rule among the neighborhood of the agents enforce homogenization. Although the overall effects of the fields are essentially the same irrespective of the dimensionality of the model, we argue that the dimensionality has a significant impact on the stability of the field-free homogeneous steady state.
Resumo:
We investigate the interface dynamics of the two-dimensional stochastic Ising model in an external field under helicoidal boundary conditions. At sufficiently low temperatures and fields, the dynamics of the interface is described by an exactly solvable high-spin asymmetric quantum Hamiltonian that is the infinitesimal generator of the zero range process. Generally, the critical dynamics of the interface fluctuations is in the Kardar-Parisi-Zhang universality class of critical behavior. We remark that a whole family of RSOS interface models similar to the Ising interface model investigated here can be described by exactly solvable restricted high-spin quantum XXZ-type Hamiltonians. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We study the effects of Ohmic, super-Ohmic, and sub-Ohmic dissipation on the zero-temperature quantum phase transition in the random transverse-field Ising chain by means of an (asymptotically exact) analytical strong-disorder renormalization-group approach. We find that Ohmic damping destabilizes the infinite-randomness critical point and the associated quantum Griffiths singularities of the dissipationless system. The quantum dynamics of large magnetic clusters freezes completely, which destroys the sharp phase transition by smearing. The effects of sub-Ohmic dissipation are similar and also lead to a smeared transition. In contrast, super-Ohmic damping is an irrelevant perturbation; the critical behavior is thus identical to that of the dissipationless system. We discuss the resulting phase diagrams, the behavior of various observables, and the implications to higher dimensions and experiments.
Resumo:
We consider a two-parameter family of Z(2) gauge theories on a lattice discretization T(M) of a three-manifold M and its relation to topological field theories. Familiar models such as the spin-gauge model are curves on a parameter space Gamma. We show that there is a region Gamma(0) subset of Gamma where the partition function and the expectation value h < W-R(gamma)> i of the Wilson loop can be exactly computed. Depending on the point of Gamma(0), the model behaves as topological or quasi-topological. The partition function is, up to a scaling factor, a topological number of M. The Wilson loop on the other hand, does not depend on the topology of gamma. However, for a subset of Gamma(0), < W-R(gamma)> depends on the size of gamma and follows a discrete version of an area law. At the zero temperature limit, the spin-gauge model approaches the topological and the quasi-topological regions depending on the sign of the coupling constant.
Resumo:
We investigate the canonical equilibrium of systems with long-range forces in competition. These forces create a modulation in the interaction potential and modulated phases appear at the system scale. The structure of these phases differentiate this system from monotonic potentials, where only the mean-field and disordered phases exist. With increasing temperature, the system switches from one ordered phase to another through a first-order phase transition. Both mean-field and modulated phases may be stable, even at zero temperature, and the long-range nature of the interaction will lead to metastability characterized by extremely long time scales.