7 resultados para YANG-MILLS FIELDS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the fact that the integral form of the equations of classical electrodynamics is well known, the same is not true for non-Abelian gauge theories. The aim of the present paper is threefold. First, we present the integral form of the classical Yang-Mills equations in the presence of sources and then use it to solve the long-standing problem of constructing conserved charges, for any field configuration, which are invariant under general gauge transformations and not only under transformations that go to a constant at spatial infinity. The construction is based on concepts in loop spaces and on a generalization of the non-Abelian Stokes theorem for two-form connections. The third goal of the paper is to present the integral form of the self-dual Yang-Mills equations and calculate the conserved charges associated with them. The charges are explicitly evaluated for the cases of monopoles, dyons, instantons and merons, and we show that in many cases those charges must be quantized. Our results are important in the understanding of global properties of non-Abelian gauge theories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review the status of integrable models from the point of view of their dynamics and integrability conditions. A few integrable models are discussed in detail. We comment on the use it is made of them in string theory. We also discuss the SO(6) symmetric Hamiltonian with SO(6) boundary. This work is especially prepared for the 70th anniversaries of Andr, Swieca (in memoriam) and Roland Koberle.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose an integral formulation of the equations of motion of a large class of field theories which leads in a quite natural and direct way to the construction of conservation laws. The approach is based on generalized non-abelian Stokes theorems for p-form connections, and its appropriate mathematical language is that of loop spaces. The equations of motion are written as the equality of a hyper-volume ordered integral to a hyper-surface ordered integral on the border of that hyper-volume. The approach applies to integrable field theories in (1 + 1) dimensions, Chern-Simons theories in (2 + 1) dimensions, and non-abelian gauge theories in (2 + 1) and (3 + 1) dimensions. The results presented in this paper are relevant for the understanding of global properties of those theories. As a special byproduct we solve a long standing problem in (3 + 1)-dimensional Yang-Mills theory, namely the construction of conserved charges, valid for any solution, which are invariant under arbitrary gauge transformations. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We construct analytical and numerical vortex solutions for an extended Skyrme-Faddeev model in a (3 + 1) dimensional Minkowski space-time. The extension is obtained by adding to the Lagrangian a quartic term, which is the square of the kinetic term, and a potential which breaks the SO(3) symmetry down to SO(2). The construction makes use of an ansatz, invariant under the joint action of the internal SO(2) and three commuting U(1) subgroups of the Poincare group, and which reduces the equations of motion to an ordinary differential equation for a profile function depending on the distance to the x(3) axis. The vortices have finite energy per unit length, and have waves propagating along them with the speed of light. The analytical vortices are obtained for a special choice of potentials, and the numerical ones are constructed using the successive over relaxation method for more general potentials. The spectrum of solutions is analyzed in detail, especially its dependence upon special combinations of coupling constants.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present the first numerical implementation of the minimal Landau background gauge for Yang-Mills theory on the lattice. Our approach is a simple generalization of the usual minimal Landau gauge and is formulated for the general SU(N) gauge group. We also report on preliminary tests of the method in the four-dimensional SU(2) case, using different background fields. Our tests show that the convergence of the numerical minimization process is comparable to the case of a null background. The uniqueness of the minimizing functional employed is briefly discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study general properties of the Landau-gauge Gribov ghost form factor sigma(p(2)) for SU(N-c) Yang-Mills theories in the d-dimensional case. We find a qualitatively different behavior for d = 3, 4 with respect to the d = 2 case. In particular, considering any (sufficiently regular) gluon propagator D(p(2)) and the one-loop-corrected ghost propagator, we prove in the 2d case that the function sigma(p(2)) blows up in the infrared limit p -> 0 as -D(0) ln(p(2)). Thus, for d = 2, the no-pole condition sigma(p(2)) < 1 (for p(2) > 0) can be satisfied only if the gluon propagator vanishes at zero momentum, that is, D(0) = 0. On the contrary, in d = 3 and 4, sigma(p(2)) is finite also if D(0) > 0. The same results are obtained by evaluating the ghost propagator G(p(2)) explicitly at one loop, using fitting forms for D(p(2)) that describe well the numerical data of the gluon propagator in two, three and four space-time dimensions in the SU(2) case. These evaluations also show that, if one considers the coupling constant g(2) as a free parameter, the ghost propagator admits a one-parameter family of behaviors (labeled by g(2)), in agreement with previous works by Boucaud et al. In this case the condition sigma(0) <= 1 implies g(2) <= g(c)(2), where g(c)(2) is a "critical" value. Moreover, a freelike ghost propagator in the infrared limit is obtained for any value of g(2) smaller than g(c)(2), while for g(2) = g(c)(2) one finds an infrared-enhanced ghost propagator. Finally, we analyze the Dyson-Schwinger equation for sigma(p(2)) and show that, for infrared-finite ghost-gluon vertices, one can bound the ghost form factor sigma(p(2)). Using these bounds we find again that only in the d = 2 case does one need to impose D(0) = 0 in order to satisfy the no-pole condition. The d = 2 result is also supported by an analysis of the Dyson-Schwinger equation using a spectral representation for the ghost propagator. Thus, if the no-pole condition is imposed, solving the d = 2 Dyson-Schwinger equations cannot lead to a massive behavior for the gluon propagator. These results apply to any Gribov copy inside the so-called first Gribov horizon; i.e., the 2d result D(0) = 0 is not affected by Gribov noise. These findings are also in agreement with lattice data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Within the superfield approach, we discuss the two-dimensional noncommutative super-QED. Its all-order finiteness is explicitly shown. Copyright (C) EPLA, 2012