29 resultados para X-rays: individual (SWIFT J195509.6 261406)
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In this work we have studied the radiation effects on MOSFET electronic devices. The integrated circuits were exposed to 10 key X-ray radiation and 2.6 MeV energy proton beam. We have irradiated MOSFET devices with two different geometries: rectangular-gate transistor and circular-gate transistor. We have observed the cumulative dose provokes shifts on the threshold voltage and increases or decreases the transistor's off-state and leakage current. The position of the trapped charges in modern CMOS technology devices depends on radiation type, dose rate, total dose, applied bias and is a function of device geometry. We concluded the circular-gate transistor is more tolerant to radiation than the rectangular-gate transistor. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We studied the energy and frequency dependence of the Fourier time lags and intrinsic coherence of the kilohertz quasi-periodic oscillations (kHz QPOs) in the neutron-star lowmass X-ray binaries 4U 1608−52 and 4U 1636−53, using a large data set obtained with the Rossi X-ray Timing Explorer. We confirmed that, in both sources, the time lags of the lower kHz QPO are soft and their magnitude increases with energy. We also found that: (i) In 4U 1636−53, the soft lags of the lower kHz QPO remain constant at∼30 μs in the QPO frequency range 500–850 Hz, and decrease to ∼10 μs when the QPO frequency increases further. In 4U 1608−52, the soft lags of the lower kHz QPO remain constant at 40 μs up to 800 Hz, the highest frequency reached by this QPO in our data. (ii) In both sources, the time lags of the upper kHz QPO are hard, independent of energy or frequency and inconsistent with the soft lags of the lower kHz QPO. (iii) In both sources the intrinsic coherence of the lower kHz QPO remains constant at ∼0.6 between 5 and 12 keV, and drops to zero above that energy. The intrinsic coherence of the upper kHz QPO is consistent with being zero across the full energy range. (iv) In 4U 1636−53, the intrinsic coherence of the lower kHz QPO increases from ∼0 at ∼600 Hz to ∼1, and it decreases to ∼0.5 at 920 Hz; in 4U 1608−52, the intrinsic coherence is consistent with the same trend. (v) In both sources the intrinsic coherence of the upper kHz QPO is consistent with zero over the full frequency range of the QPO, except in 4U 1636−53 between 700 and 900 Hz where the intrinsic coherence marginally increases. We discuss our results in the context of scenarios in which the soft lags are either due to reflection off the accretion disc or up-/down-scattering in a hot medium close to the neutron star. We finally explore the connection between, on one hand the time lags and the intrinsic coherence of the kHz QPOs, and on the other the QPOs’ amplitude and quality factor in these two sources.
Resumo:
The extrapolation chamber is a parallel-plate ionization chamber that allows variation of its air-cavity volume. In this work, an experimental study and MCNP-4C Monte Carlo code simulations of an ionization chamber designed and constructed at the Calibration Laboratory at IFEN to be used as a secondary dosimetry standard for low-energy X-rays are reported. The results obtained were within the international recommendations, and the simulations showed that the components of the extrapolation chamber may influence its response up to 11.0%. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The objective of the present study was to evaluate the efficiency of X-rays in identifying fissures in artificially dried rice seeds and the relationship between damage and seed performance in the germination test. Irrigated rice seeds of the IRGA 417 and IRGA 420 cultivars were harvested with 23.3 and 24.5% water content respectively and submitted to stationary drying treatments at 32, 38, 44 and 50 °C. X-rays were taken of subsamples of 100 seeds for each treatment, using an MX-20 X-ray equipment. The X-rayed seeds were classified from 1 to 3, where 1 corresponded to seeds without fissures, 2 to seeds with non-severe fissures and 3 to seeds with severe fissures. The same X-rayed seeds were planted and on the seventh day the seedlings (normal or abnormal) and dead seeds were photographed and evaluated to verify any relationship between the fissures and physiological potential. Higher drying temperature increased the percentage of fissures in the two cultivars, which can adversely affect their germination. Seeds with fissures can be identified using X-rays.
Resumo:
In accelerating dark energy models, the estimates of the Hubble constant, Ho, from Sunyaev-Zerdovich effect (SZE) and X-ray surface brightness of galaxy clusters may depend on the matter content (Omega(M)), the curvature (Omega(K)) and the equation of state parameter GO. In this article, by using a sample of 25 angular diameter distances of galaxy clusters described by the elliptical beta model obtained through the SZE/X-ray technique, we constrain Ho in the framework of a general ACDM model (arbitrary curvature) and a flat XCDM model with a constant equation of state parameter omega = p(x)/rho(x). In order to avoid the use of priors in the cosmological parameters, we apply a joint analysis involving the baryon acoustic oscillations (BA()) and the (MB Shift Parameter signature. By taking into account the statistical and systematic errors of the SZE/X-ray technique we obtain for nonflat ACDM model H-0 = 74(-4.0)(+5.0) km s(-1) Mpc(-1) (1 sigma) whereas for a fiat universe with constant equation of state parameter we find H-0 = 72(-4.0)(+5.5) km s(-1) Mpc(-1)(1 sigma). By assuming that galaxy clusters are described by a spherical beta model these results change to H-0 = 6(-7.0)(+8.0) and H-0 = 59(-6.0)(+9.0) km s(-1) Mpc(-1)(1 sigma), respectively. The results from elliptical description are in good agreement with independent studies from the Hubble Space Telescope key project and recent estimates based on the Wilkinson Microwave Anisotropy Probe, thereby suggesting that the combination of these three independent phenomena provides an interesting method to constrain the Bubble constant. As an extra bonus, the adoption of the elliptical description is revealed to be a quite realistic assumption. Finally, by comparing these results with a recent determination for a, flat ACDM model using only the SZE/X-ray technique and BAO, we see that the geometry has a very weak influence on H-0 estimates for this combination of data.
Resumo:
We present a new method to quantify substructures in clusters of galaxies, based on the analysis of the intensity of structures. This analysis is done in a residual image that is the result of the subtraction of a surface brightness model, obtained by fitting a two-dimensional analytical model (beta-model or Sersic profile) with elliptical symmetry, from the X-ray image. Our method is applied to 34 clusters observed by the Chandra Space Telescope that are in the redshift range z is an element of [0.02, 0.2] and have a signal-to-noise ratio (S/N) greater than 100. We present the calibration of the method and the relations between the substructure level with physical quantities, such as the mass, X-ray luminosity, temperature, and cluster redshift. We use our method to separate the clusters in two sub-samples of high-and low-substructure levels. We conclude, using Monte Carlo simulations, that the method recuperates very well the true amount of substructure for small angular core radii clusters (with respect to the whole image size) and good S/N observations. We find no evidence of correlation between the substructure level and physical properties of the clusters such as gas temperature, X-ray luminosity, and redshift; however, analysis suggest a trend between the substructure level and cluster mass. The scaling relations for the two sub-samples (high-and low-substructure level clusters) are different (they present an offset, i. e., given a fixed mass or temperature, low-substructure clusters tend to be more X-ray luminous), which is an important result for cosmological tests using the mass-luminosity relation to obtain the cluster mass function, since they rely on the assumption that clusters do not present different scaling relations according to their dynamical state.
Resumo:
Organic-inorganic composite membranes were prepared from membranes of the bio-polymer bacterial cellulose (BC) and organic-inorganic sal composed of nanoparticulate boehmite and epoxi modified siloxane. Bacterial cellulose membranes are obtained in a highly hydrated state (1% cellulose and 99% cellulose) from cultures of Gluconacetobacter xylinus and could be used in the never-dried or in the dried state. Depending on the use of dried or never-dried BC membranes two main kinds of composites were obtained. In the first one dried BC membranes coated with the hybrid sol have lead to transparent membranes displaying a hi-phase structure where the two components could be easily distinguished, with individual structures preserved. A decrease was observed for tensile strength (50.5 MPa) and Young's Modulus (2.8 GPa) when compared to pure BC membrane (112.5 MPa and 12.7 GPa). Elongation at break was observed to increase (2.5% against 1.5% observed for BC). When never-dried BC membranes were used transparent membranes were also obtained, however an improvement was observed for mechanical properties (tensile strength - 116 MPa and Young's Modulus - 13.7 GPa). A lower value was obtained for the elongation at break (1.3%). In the last case the interaction between the two-phases lead to changes in the cellulose crystallinity as shown by X rays diffraction results. Multifunctional transparent membranes displaying the cellulose structure in one side and the boehmite-siloxane structure at the opposite face could find special applications in opto-electronics or biomedical areas taking advantage of the different chemical nature of the two components. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The recent addition of endoscopy in dental practice has enabled clinicians to have an excellent view of the operative field, yielding highly successful visualization of anatomical structures that are difficult to access, both in oral surgery and endodontics. The purpose of this report is to provide an in vitro macroscopic, radiographic, and endoscopic description of the anatomic variation of the roots of maxillary and mandibular first premolars in the same patient. A 22-year-old patient was referred by an orthodontist for the extraction of all the first premolars. Once extracted, the premolars were examined macroscopically and then analyzed radiographically after trepanation and filled root canal systems. Subsequently, a diaphanization process was carried out and the samples were sectioned at the middle and apical third for observation by endoscope. It was found that both the maxillary first premolars had three roots, and mandibular first premolars had two roots, all with complete root formation. Apical deltas or accessory canals were not identified in the radiographic images; however, through endoscope at the middle third, it was possible to observe an accessory canal to the first maxillary and mandibular right premolars. Thus, it can be concluded that the view through the endoscope allows better identification of accessory canals than X-rays.
Resumo:
The periodic spectroscopic events in eta Carinae are now well established and occur near the periastron passage of two massive stars in a very eccentric orbit. Several mechanisms have been proposed to explain the variations of different spectral features, such as an eclipse by the wind-wind collision (WWC) boundary, a shell ejection from the primary star or accretion of its wind onto the secondary. All of them have problems explaining all the observed phenomena. To better understand the nature of the cyclic events, we performed a dense monitoring of eta Carinae with five Southern telescopes during the 2009 low-excitation event, resulting in a set of data of unprecedented quality and sampling. The intrinsic luminosity of the He II lambda 4686 emission line (L similar to 310 L-circle dot) just before periastron reveals the presence of a very luminous transient source of extreme UV radiation emitted in the WWC region. Clumps in the primary's wind probably explain the flare-like behavior of both the X-ray and He II lambda 4686 light curves. After a short-lived minimum, He II lambda 4686 emission rises again to a new maximum, when X-rays are still absent or very weak. We interpret this as a collapse of the WWC onto the "surface" of the secondary star, switching off the hard X-ray source and diminishing the WWC shock cone. The recovery from this state is controlled by the momentum balance between the secondary's wind and the clumps in the primary's wind.
Resumo:
We report the discovery of 12 new fossil groups (FGs) of galaxies, systems dominated by a single giant elliptical galaxy and cluster-scale gravitational potential, but lacking the population of bright galaxies typically seen in galaxy clusters. These FGs, selected from the maxBCG optical cluster catalog, were detected in snapshot observations with the Chandra X-ray Observatory. We detail the highly successful selection method, with an 80% success rate in identifying 12 FGs from our target sample of 15 candidates. For 11 of the systems, we determine the X-ray luminosity, temperature, and hydrostatic mass, which do not deviate significantly from expectations for normal systems, spanning a range typical of rich groups and poor clusters of galaxies. A small number of detected FGs are morphologically irregular, possibly due to past mergers, interaction of the intra-group medium with a central active galactic nucleus (AGN), or superposition of multiple massive halos. Two-thirds of the X-ray-detected FGs exhibit X-ray emission associated with the central brightest cluster galaxy (BCG), although we are unable to distinguish between AGN and extended thermal galaxy emission using the current data. This sample representing a large increase in the number of known FGs, will be invaluable for future planned observations to determine FG temperature, gas density, metal abundance, and mass distributions, and to compare to normal (non-fossil) systems. Finally, the presence of a population of galaxy-poor systems may bias mass function determinations that measure richness from galaxy counts. When used to constrain power spectrum normalization and Omega(m), these biased mass functions may in turn bias these results.
Resumo:
The electronic stopping cross section (SCS) of Al2O3 for proton beams is studied both experimentally and theoretically. The measurements are made for proton energies from 40 keV up to 1 MeV, which cover the maximum stopping region, using two experimental methods, the transmission technique at low energies (similar to 40-175 keV) and the Rutherford backscattering at high energies (approximate to 190-1000 keV). These new data reveal an increment of 16% in the SCS around the maximum stopping with respect to older measurements. The theoretical study includes electronic stopping power calculations based on the dielectric formalism and on the transport cross section (TCS) model to describe the electron excitations of Al2O3. The non-linear TCS calculations of the SCS for valence electrons together with the generalized oscillator strengths (GOS) model for the core electrons compare well with the experimental data in the whole range of energies considered.
Resumo:
This review reports the Brazilian history in astrobiology, as well as the first delineation of a vision of the future development of the field in the country, exploring its abundant biodiversity, highly capable human resources and state-of-the-art facilities, reflecting the last few years of stable governmental investments in science, technology and education, all conditions providing good perspectives on continued and steadily growing funding for astrobiology-related research. Brazil is growing steadily and fast in terms of its worldwide economic power, an effect being reflected in different areas of the Brazilian society, including industry, technology, education, social care and scientific production. In the field of astrobiology, the country has had some important landmarks, more intensely after the First Brazilian Workshop on Astrobiology in 2006. The history of astrobiology in Brazil, however, is not so recent and had its first occurrence in 1958. Since then, researchers carried out many individual initiatives across the country in astrobiology-related fields, resulting in an ever growing and expressive scientific production. The number of publications, including articles and theses, has particularly increased in the last decade, but still counting with the effort of researchers working individually. That scenario started to change in 2009, when a formal group of Brazilian researchers working with astrobiology was organized, aiming at congregating the scientific community interested in the subject and to promote the necessary interactions to achieve a multidisciplinary work, receiving facilities and funding from the University de Sao Paulo and other funding agencies. Received 29 February 2012, accepted 17 May 2012, first published online 18 July 2012
Resumo:
While fewer in number than the dominant rotation-powered radio pulsar population, peculiar classes of isolated neutron stars (INSs) which include magnetars, the ROSAT-discovered "Magnificent Seven" (M7), rotating radio transients (RRATs), and central compact objects in supernova remnants (CCOs) - represent a key element in understanding the neutron star phenomenology. We report the results of an observational campaign to study the properties of the source 2XMM J104608.7-594306, a newly discovered thermally emitting INS. The evolutionary state of the neutron star is investigated by means of deep dedicated observations obtained with the XMM-Newton Observatory, the ESO Very Large Telescope, as well as publicly available gamma-ray data from the Fermi Space Telescope and the AGILE Mission. The observations confirm previous expectations and reveal a unique type of object. The source, which is likely within the Carina Nebula (N-H = 2.6x10(21) cm(-2)), has a spectrum that is both thermal and soft, with kT(infinity) = 135 eV. Non-thermal (magnetospheric) emission is not detected down to 1% (3 sigma, 0.1-12 keV) of the source luminosity. Significant deviations (absorption features) from a simple blackbody model are identified in the spectrum of the source around energies 0.6 keV and 1.35 keV. While the former deviation is likely related to a local oxygen overabundance in the Carina Nebula, the latter can only be accounted for by an additional spectral component, which is modelled as a Gaussian line in absorption with EW = 91 eV and sigma = 0.14 keV (1 sigma). Furthermore, the optical counterpart is fainter than m(V) = 27 (2 sigma) and no gamma-ray emission is significantly detected by either the Fermi or AGILE missions. Very interestingly, while these characteristics are remarkably similar to those of the M7 or the only RRAT so far detected in X-rays, which all have spin periods of a few seconds, we found intriguing evidence of very rapid rotation, P = 18.6ms, at the 4 sigma confidence level. We interpret these new results in the light of the observed properties of the currently known neutron star population, in particular those of standard rotation-powered pulsars, recycled objects, and CCOs. We find that none of these scenarios can satisfactorily explain the collective properties of 2XMM J104608.7-594306, although it may be related to the still poorly known class of Galactic anti-magnetars. Future XMM-Newton data, granted for the next cycle of observations (AO11), will help us to improve our current observational interpretation of the source, enabling us to significantly constrain the rate of pulsar spin down.
Resumo:
Context. The angular diameter distances toward galaxy clusters can be determined with measurements of Sunyaev-Zel'dovich effect and X-ray surface brightness combined with the validity of the distance-duality relation, D-L(z)(1 + z)(2)/D-A(z) = 1, where D-L(z) and D-A(z) are, respectively, the luminosity and angular diameter distances. This combination enables us to probe galaxy cluster physics or even to test the validity of the distance-duality relation itself. Aims. We explore these possibilities based on two different, but complementary approaches. Firstly, in order to constrain the possible galaxy cluster morphologies, the validity of the distance-duality relation (DD relation) is assumed in the Lambda CDM framework (WMAP7). Secondly, by adopting a cosmological-model-independent test, we directly confront the angular diameters from galaxy clusters with two supernovae Ia (SNe Ia) subsamples (carefully chosen to coincide with the cluster positions). The influence of the different SNe Ia light-curve fitters in the previous analysis are also discussed. Methods. We assumed that eta is a function of the redshift parametrized by two different relations: eta(z) = 1 +eta(0)z, and eta(z) = 1 + eta(0)z/(1 + z), where eta(0) is a constant parameter quantifying the possible departure from the strict validity of the DD relation. In order to determine the probability density function (PDF) of eta(0), we considered the angular diameter distances from galaxy clusters recently studied by two different groups by assuming elliptical and spherical isothermal beta models and spherical non-isothermal beta model. The strict validity of the DD relation will occur only if the maximum value of eta(0) PDF is centered on eta(0) = 0. Results. For both approaches we find that the elliptical beta model agrees with the distance-duality relation, whereas the non-isothermal spherical description is, in the best scenario, only marginally compatible. We find that the two-light curve fitters (SALT2 and MLCS2K2) present a statistically significant conflict, and a joint analysis involving the different approaches suggests that clusters are endowed with an elliptical geometry as previously assumed. Conclusions. The statistical analysis presented here provides new evidence that the true geometry of clusters is elliptical. In principle, it is remarkable that a local property such as the geometry of galaxy clusters might be constrained by a global argument like the one provided by the cosmological distance-duality relation.
Resumo:
Abstract Background Smear negative pulmonary tuberculosis (SNPT) accounts for 30% of pulmonary tuberculosis cases reported yearly in Brazil. This study aimed to develop a prediction model for SNPT for outpatients in areas with scarce resources. Methods The study enrolled 551 patients with clinical-radiological suspicion of SNPT, in Rio de Janeiro, Brazil. The original data was divided into two equivalent samples for generation and validation of the prediction models. Symptoms, physical signs and chest X-rays were used for constructing logistic regression and classification and regression tree models. From the logistic regression, we generated a clinical and radiological prediction score. The area under the receiver operator characteristic curve, sensitivity, and specificity were used to evaluate the model's performance in both generation and validation samples. Results It was possible to generate predictive models for SNPT with sensitivity ranging from 64% to 71% and specificity ranging from 58% to 76%. Conclusion The results suggest that those models might be useful as screening tools for estimating the risk of SNPT, optimizing the utilization of more expensive tests, and avoiding costs of unnecessary anti-tuberculosis treatment. Those models might be cost-effective tools in a health care network with hierarchical distribution of scarce resources.