2 resultados para Woodwind quartets (Saxophones (4)), Arranged
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The ( Z)-4,4,4-trifluoro-3-(2-hydroxyethylamino)-1-(2-hydroxyphenyl)-2-buten-1-one (C12H12F3NO3) compound was thoroughly studied by IR, Raman, UV-visible, and C-13 and F-19 NMR spectroscopies. The solid-state molecular structure was determined by X-ray diffraction methods. It crystallizes in the P2(1)/c space group with a = 12.1420(4) angstrom, b = 7.8210(3) angstrom, c := 13.8970(5) angstrom, beta = 116.162(2)degrees, and Z = 4 molecules per unit cell. The molecule shows a nearly planar molecular skeleton, favored by intramolecular OH center dot center dot center dot 0 and NH center dot center dot center dot 0 bonds, which are arranged in the lattice as an OH center dot center dot center dot 0 bonded polymer coiled around crystallographic 2-fold screw-axes. The three postulated tautomers were evaluated using quantum chemical calculations. The lowest energy tautomer (I) calculated with density functional theory methods agrees with the observed crystal structure. The structural and conformational properties are discussed considering the effect of the intra- and intermolecular hydrogen bond interactions.
Resumo:
The analysis of the infrared (IR) carbonyl band of some 3-(4'-substituted phenylsulfonyl)-1-methyl-2-piperidones 1-5 bearing as substituents: OMe 1, Me 2, H 3, Cl 4 and NO2 5, supported by B3LY13/6-31G(d,p) calculations along with NBO analysis (for 1, 3 and 5) and X-ray diffraction (for 5), indicated the existence of three stable conformations i.e. quasi-axial (q-ax), syn-clinal (s-cl) and quasi-equatorial (q-eq). In the gas phase, the q-ax conformer is calculated as the most stable (ca. 88%) and the least polar, the s-cl conformer is less stable (ca. 12%) but more polar, and the q-eq conformer is the least stable (ca. 1%) and the most polar of the three conformers evaluated. The sum of the most important orbital interactions from NBO analysis and the trend of the electrostatic interactions accounts for the relative populations as well as for the v(CO) frequencies of the q-ax. s-cl and q-eq conformers calculated in the gas phase. The unique IR v(CO) band in CCl4 may be ascribed to the most stable q-ax conformer. The more intense (60%) high frequency doublet component in CHCl3 may be assigned to the summing up of the least stable q-eq and the less stable s-cl conformers, as their frequencies are almost coincident. The occurrence of only a single v(CO) band in both CH2Cl2 and CH3CN supports the fact that the v(CO) band of the two more polar conformers appear as a single band. Additional support to this rationalization is given by the single point PCM method, which showed a progressive increase of the q-eq + s-cl/q-ax population ratio going from the gas phase to CCl4, to CHCl3, to CH2Cl2 and to CN3CN. X-ray single crystal analysis of 5 indicates that this compound displays a quasi-axial geometry with respect to the [O=C-CH-S] moiety, and that the 2-piperidone ring assumes a slightly distorted half-chair conformation. In the crystal packing, molecules of 5 are arranged into supramolecular layers linked through C-H center dot center dot center dot O interactions along with it pi center dot center dot center dot pi interactions between adjacent benzene rings. (C) 2012 Elsevier B.V. All rights reserved.