3 resultados para Wood characteristics
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The knowledge of the variations in the wood characteristics produced by eucalyptus trees according to age and sampling positions is essential for its proper use. This study had as objective to evaluate the influence of the age, longitudinal and radial positions on basic density and anatomical characteristics in Eucalyptus grandis wood. The trees were planted in 3x2 m spacing and fertilized with commercial fertilizers in planting, 6th and 12th months. According to basal area distribution, fifteen trees were selected (24, 36 and 72 months of age) - five trees per age. Disks at DBH position (1.3 m) were taken for fiber determination (length, wall thickness, lumen diameter and width) and vessels (tangential diameter, frequency and area occupied) and in other different sampling positions for basic density determination. Wood basic density increased from 0.43 to 0.46 g.cm(-3) as well as the trees age increases with a longitudinal variation model, characterized through a decrease in base-3m (0.42-0.49 -> 0.40-0.46 g.cm(-3)) and an increase to the top of the trunk (0.46 -> 0.54 g.cm(-3)) Fibers and vessels dimensions showed variations related to age and to pit-bark direction. Wood properties behavior and variations indicate that, until this period, the juvenile wood is being formed.
Resumo:
Thermal treatment (thermal rectification) is a process in which technological properties of wood are modified using thermal energy, the result of Which is often value-added wood. Thermally treated wood takes on similar color shades to tropical woods and offers considerable resistance to destructive microorganisms and climate action, in addition to having high dimensional stability and low hygroscopicity. Wood samples of Eucalyptus grandis were subjected to various thermal treatments, as performed in presence (140 degrees C; 160 degrees C; 180 degrees C) or in absence of oxygen (160 degrees C; 180 degrees C; 200 degrees C) inside a thermal treatment chamber, and then studied as to their chemical characteristics. Increasing the maximum treatment temperatures led to a reduction in the holocellulose content of samples as a result of the degradation and volatilization of hemicelluloses, also leading to an increase in the relative lignin content. Except for glucose, all monosaccharide levels were found to decrease in samples after the thermal treatment at a maximum temperature of 200 degrees C. The thermal treatment above 160 degrees C led to increased levels of total extractives in the wood samples, probably ascribed to the emergence of low molecular weight substances as a result of thermal degradation. Overall, it was not possible to clearly determine the effect of presence or absence of oxygen in the air during thermal treatment on the chemical characteristics of the relevant wood samples.
Resumo:
Thermal treatment (thermal rectification) is a process in which technological properties of wood are modified using thermal energy, the result of which is often value-added wood. Thermally treated wood takes on similar color shades to tropical woods and offers considerable resistance to destructive microorganisms and climate action, in addition to having high dimensional stability and low hygroscopicity. Wood samples of Eucalyptus grandis were subjected to various thermal treatments, as performed in presence (140ºC; 160ºC; 180ºC) or in absence of oxygen (160ºC; 180ºC; 200ºC) inside a thermal treatment chamber, and then studied as to their chemical characteristics. Increasing the maximum treatment temperatures led to a reduction in the holocellulose content of samples as a result of the degradation and volatilization of hemicelluloses, also leading to an increase in the relative lignin content. Except for glucose, all monosaccharide levels were found to decrease in samples after the thermal treatment at a maximum temperature of 200ºC. The thermal treatment above 160ºC led to increased levels of total extractives in the wood samples, probably ascribed to the emergence of low molecular weight substances as a result of thermal degradation. Overall, it was not possible to clearly determine the effect of presence or absence of oxygen in the air during thermal treatment on the chemical characteristics of the relevant wood samples.