2 resultados para Wind effects

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Rio de la Plata waters form a low salinity tongue that affects the circulation, stratification and the distributions of nutrients and biological species over a wide extent of the adjacent continental shelf. The plume of coastal waters presents a seasonal meridional displacement reaching lower latitudes (28,S) during austral winter and 32 degrees S during summer. Historical data suggests that the wind causes the alongshore shift, with southwesterly (SW) winds forcing the plume to lower latitudes in winter while summer dominant northeasterly (NE) winds force its southward retreat. To establish the connection between wind and outflow variations on the distribution of the coastal waters, we conducted two quasi-synoptic surveys in the region of Plata influence on the continental shelf and slope of southeastern South America, between Mar del Plata, Argentina and the northern coast of Santa Catarina, Brazil. We observed that: (A) SW winds dominating in winter force the northward spreading of the plume to low latitudes even during low river discharge periods; (B) NE winds displace the plume southward and spread the low salinity waters offshore over the entire width of the continental shelf east of the Plata estuary. The southward retreat of the plume in summer leads to a volume decrease of low salinity waters over the shelf. This volume is compensated by an increase of Tropical waters, which dominate the northern shelf. The subsurface transition between Subantarctic and Subtropical Shelf Waters, the Subtropical Shelf Front, and the subsurface water mass distribution, however, present minor seasonal variations. Along shore winds also influence the dynamics and water mass variations along the continental shelf area. In areas under the influence of river discharge, Subtropical Shelf Waters are kept away from the coastal region. When low salinity waters retreat southward, NE winds induce a coastal upwelling system near Santa Marta Cape. In summer, solar radiation promotes the establishment of a strong thermocline that increases buoyancy and further enhances the offshore displacement of low salinity waters under the action of NE winds. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impacts of change in the Grell convective scheme and biosphere-atmosphere transfer scheme (BATS) in RegCM3 are described. Three numerical experiments (RegZhang, RegClaris and RegArain) are conducted to reduce the RegCM3-Grell rainfall underestimation over tropical South America. The simulation referred to as RegZhang follows modifications made by Zhang et al. (2008) in the BATS. The RegClaris combines the RegZhang BATS parameters with a reduction of water drainage at the bottom of the subsoil layer in the regions covered by the tropical rain forest and a shorter convective time period for the Grell scheme. The RegArain considers this same modification in the Grell scheme, but uses a deeper total soil column and a deeper root system in the BATS. After the first year of simulation, the soil water content in RegZhang is progressively drained out of the soil column resulting in a deficit of rainfall in the Amazon. The RegClaris and RegArain, on the other hand, simulate a similar rainfall annual cycle in the Amazon, showing substantial improvement not only in phase but also in intensity. This improvement is partially related to an increase in evapotranspiration due to a larger availability of water in the soil column. A remote effect is also noted over the La Plata Basin region, where the larger summer rainfall rate may be related to the increase in moisture transport from the Amazon. Wind- and rainfall-based indices are applied to identify South American monsoon (SAM) timing. The RegClaris rainfall rates are adequate to identify the onset and the demise of SAM according to the observed data, whereas the rainfall deficit in RegZhang is associated with a delay in the onset and an early demise of the SAM.