3 resultados para Wendell
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Aim Matrix metalloproteinases (MMPs) play a key role in the tissue destruction characteristic of chronic periodontitis. The purpose of this study was to investigate the association of MMP and TIMP polymorphisms with chronic periodontitis in two populations. Material and Methods A total of 34 polymorphisms spanning 12 MMP and 2 TIMP genes were genotyped in 401 individuals from Brazil (99 cases with chronic periodontitis and 302 controls), and 274 individuals from the US (70 cases and 204 controls). Individuals were considered cases if presenting at least three teeth exhibiting sites of clinical attachment loss =5 mm in two different quadrants. Controls were characterized by absence of clinical attachment loss and no sites with probing depth >3 mm. MMP3 and TIMP1 mRNA expression was evaluated in healthy and diseased periodontal tissues. Results TIMP1 showed association with chronic periodontitis in the Brazilian population (for rs5906435, p = 0.0004), whereas MMP3 showed association in the US population (for rs679620, p = 0.0003; and rs650108, p = 0.002) and in the Brazilian population (for rs639752, p = 0.005). MMP3 and TIMP1 mRNA expression was significantly higher in diseased tissues when compared to control tissues. Conclusions Our results further support a role for variations in MMP3 in chronic periodontitis and report a novel association with TIMP1. These genes may be considered additional candidate genes for chronic periodontitis.
Resumo:
We have previously shown the association of AXIN2 with oral clefts in a US population. Here, we expanded our study to explore the association of 11 AXIN2 markers in 682 cleft families from multiple populations. Alleles for each AXIN2 marker were tested for transmission distortion with clefts by means of the Family-based Association Test. We observed an association with SNP rs7224837 and all clefts in the combined populations (p = 0.001), and with SNP rs3923086 and cleft lip and palate in Asian populations (p = 0.004). We confirmed our association findings in an additional 528 cleft families from the United States (p < 0.009). We tested for gene-gene interaction between AXIN2 and additional cleft susceptibility loci. We assessed and detected Axin2 mRNA and protein expression during murine palatogenesis. In addition, we also observed co-localization of Axin2 with Irf6 proteins, particularly in the epithelium. Our results continue to support a role for AXIN2 in the etiology of human clefting. Additional studies should be performed to improve our understanding of the biological mechanisms linking AXIN2 to oral clefts.
Resumo:
Microchip electrophoresis has become a powerful tool for DNA separation, offering all of the advantages typically associated with miniaturized techniques: high speed, high resolution, ease of automation, and great versatility for both routine and research applications. Various substrate materials have been used to produce microchips for DNA separations, including conventional (glass, silicon, and quartz) and alternative (polymers) platforms. In this study, we perform DNA separation in a simple and low-cost polyester-toner (PeT)-based electrophoresis microchip. PeT devices were fabricated by a direct-printing process using a 600 dpi-resolution laser printer. DNA separations were performed on PeT chip with channels filled with polymer solutions (0.5% m/v hydroxyethylcellulose or hydroxypropylcellulose) at electric fields ranging from 100 to 300Vcm(-1). Separation of DNA fragments between 100 and 1000 bp, with good correlation of the size of DNA fragments and mobility, was achieved in this system. Although the mobility increased with increasing electric field, separations showed the same profile regardless of the electric field. The system provided good separation efficiency (215 000 plates per m for the 500 bp fragment) and the separation was completed in 4 min for 1000 bp fragment ladder. The cost of a given chip is approximately $0.15 and it takes less than 10 minutes to prepare a single device.