4 resultados para Weather forecasting

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brazil is the largest sugarcane producer in the world and has a privileged position to attend to national and international market places. To maintain the high production of sugarcane, it is fundamental to improve the forecasting models of crop seasons through the use of alternative technologies, such as remote sensing. Thus, the main purpose of this article is to assess the results of two different statistical forecasting methods applied to an agroclimatic index (the water requirement satisfaction index; WRSI) and the sugarcane spectral response (normalized difference vegetation index; NDVI) registered on National Oceanic and Atmospheric Administration Advanced Very High Resolution Radiometer (NOAA-AVHRR) satellite images. We also evaluated the cross-correlation between these two indexes. According to the results obtained, there are meaningful correlations between NDVI and WRSI with time lags. Additionally, the adjusted model for NDVI presented more accurate results than the forecasting models for WRSI. Finally, the analyses indicate that NDVI is more predictable due to its seasonality and the WRSI values are more variable making it difficult to forecast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addressed the problem of water-demand forecasting for real-time operation of water supply systems. The present study was conducted to identify the best fit model using hourly consumption data from the water supply system of Araraquara, Sa approximate to o Paulo, Brazil. Artificial neural networks (ANNs) were used in view of their enhanced capability to match or even improve on the regression model forecasts. The ANNs used were the multilayer perceptron with the back-propagation algorithm (MLP-BP), the dynamic neural network (DAN2), and two hybrid ANNs. The hybrid models used the error produced by the Fourier series forecasting as input to the MLP-BP and DAN2, called ANN-H and DAN2-H, respectively. The tested inputs for the neural network were selected literature and correlation analysis. The results from the hybrid models were promising, DAN2 performing better than the tested MLP-BP models. DAN2-H, identified as the best model, produced a mean absolute error (MAE) of 3.3 L/s and 2.8 L/s for training and test set, respectively, for the prediction of the next hour, which represented about 12% of the average consumption. The best forecasting model for the next 24 hours was again DAN2-H, which outperformed other compared models, and produced a MAE of 3.1 L/s and 3.0 L/s for training and test set respectively, which represented about 12% of average consumption. DOI: 10.1061/(ASCE)WR.1943-5452.0000177. (C) 2012 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polarimetric X-band radar has been deployed during one month (April 2011) for a field campaign in Fortaleza, Brazil, together with three additional laser disdrometers. The disdrometers are capable of measuring the raindrop size distributions (DSDs), hence making it possible to forward-model theoretical polarimetric X-band radar observables at the point where the instruments are located. This setup allows to thoroughly test the accuracy of the X-band radar measurements as well as the algorithms that are used to correct the radar data for radome and rain attenuation. For the campaign in Fortaleza it was found that radome attenuation dominantly affects the measurements. With an algorithm that is based on the self-consistency of the polarimetric observables, the radome induced reflectivity offset was estimated. Offset corrected measurements were then further corrected for rain attenuation with two different schemes. The performance of the post-processing steps was analyzed by comparing the data with disdrometer-inferred polarimetric variables that were measured at a distance of 20 km from the radar. Radome attenuation reached values up to 14 dB which was found to be consistent with an empirical radome attenuation vs. rain intensity relation that was previously developed for the same radar type. In contrast to previous work, our results suggest that radome attenuation should be estimated individually for every view direction of the radar in order to obtain homogenous reflectivity fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work were apply and provide a preliminary evaluation of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) performance, for Londrina region. We performed comparison with measurements obtained in meteorological stations. The model was configured to run with three domains with 27,9 and 3 km of grid resolution, using the ndown program and also was realized a simulation with the model configured to run with a single domain using a land use file based in a classified image for region of MODIS sensor. The emission files to supply the chemistry run were generated based in the work of Martins et al., 2012. RADM2 chemical mechanism and MADE/SORGAM modal aerosol models were used in the simulations. The results demonstrated that model was able to represent coherently the formation and dispersion of the pollution in Metropolitan Region of Londrina and also the importance of using the appropriate land use file for the region.