3 resultados para Weak star convergence

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Feedback stabilization of an ensemble of non interacting half spins described by the Bloch equations is considered. This system may be seen as an interesting example for infinite dimensional systems with continuous spectra. We propose an explicit feedback law that stabilizes asymptotically the system around a uniform state of spin +1/2 or -1/2. The proof of the convergence is done locally around the equilibrium in the H-1 topology. This local convergence is shown to be a weak asymptotic convergence for the H-1 topology and thus a strong convergence for the C topology. The proof relies on an adaptation of the LaSalle invariance principle to infinite dimensional systems. Numerical simulations illustrate the efficiency of these feedback laws, even for initial conditions far from the equilibrium. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present two new constraint qualifications (CQs) that are weaker than the recently introduced relaxed constant positive linear dependence (RCPLD) CQ. RCPLD is based on the assumption that many subsets of the gradients of the active constraints preserve positive linear dependence locally. A major open question was to identify the exact set of gradients whose properties had to be preserved locally and that would still work as a CQ. This is done in the first new CQ, which we call the constant rank of the subspace component (CRSC) CQ. This new CQ also preserves many of the good properties of RCPLD, such as local stability and the validity of an error bound. We also introduce an even weaker CQ, called the constant positive generator (CPG), which can replace RCPLD in the analysis of the global convergence of algorithms. We close this work by extending convergence results of algorithms belonging to all the main classes of nonlinear optimization methods: sequential quadratic programming, augmented Lagrangians, interior point algorithms, and inexact restoration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When compared to our Solar System, many exoplanet systems exhibit quite unusual planet configurations; some of these are hot Jupiters, which orbit their central stars with periods of a few days, others are resonant systems composed of two or more planets with commensurable orbital periods. It has been suggested that these configurations can be the result of a migration processes originated by tidal interactions of the planets with disks and central stars. The process known as planet migration occurs due to dissipative forces which affect the planetary semi-major axes and cause the planets to move towards to, or away from, the central star. In this talk, we present possible signatures of planet migration in the distribution of the hot Jupiters and resonant exoplanet pairs. For this task, we develop a semi-analytical model to describe the evolution of the migrating planetary pair, based on the fundamental concepts of conservative and dissipative dynamics of the three-body problem. Our approach is based on an analysis of the energy and the orbital angular momentum exchange between the two-planet system and an external medium; thus no specific kind of dissipative forces needs to be invoked. We show that, under assumption that dissipation is weak and slow, the evolutionary routes of the migrating planets are traced by the stationary solutions of the conservative problem (Birkhoff, Dynamical systems, 1966). The ultimate convergence and the evolution of the system along one of these modes of motion are determined uniquely by the condition that the dissipation rate is sufficiently smaller than the roper frequencies of the system. We show that it is possible to reassemble the starting configurations and migration history of the systems on the basis of their final states, and consequently to constrain the parameters of the physical processes involved.