12 resultados para Water masses

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine Weddell Sea deep water mass distributions with respect to the results from three different model runs using the oceanic component of the National Center for Atmospheric Research Community Climate System Model (NCAR-CCSM). One run is inter-annually forced by corrected NCAR/NCEP fluxes, while the other two are forced with the annual cycle obtained from the same climatology. One of the latter runs includes an interactive sea-ice model. Optimum Multiparameter analysis is applied to separate the deep water masses in the Greenwich Meridian section (into the Weddell Sea only) to measure the degree of realism obtained in the simulations. First, we describe the distribution of the simulated deep water masses using observed water type indices. Since the observed indices do not provide an acceptable representation of the Weddell Sea deep water masses as expected, they are specifically adjusted for each simulation. Differences among the water masses` representations in the three simulations are quantified through their root-mean-square differences. Results point out the need for better representation (and inclusion) of ice-related processes in order to improve the oceanic characteristics and variability of dense Southern Ocean water masses in the outputs of the NCAR-CCSM model, and probably in other ocean and climate models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using distributions of benthic Foraminifera and bottom-water variables (depth, salinity, temperature, oxygen, suspended matter, organic matter, phosphate, silicate, nitrite, and nitrate), we investigated movements of water masses on the South Brazilian Shelf (27-30 degrees S) and assessed the seasonality of continental runoff on the distribution of shelf water masses. The data were obtained from water and sediment samples collected in the austral winter of 2003 and austral summer of 2004 in three transects. The terrestrial nutrient input was significantly reduced at stations away from the coast, but high values of nutrients were maintained in subsurface waters due the presence of South Atlantic Central Water (SACW) at greater depths. At shallow sampling stations the influence of freshwater runoff was related to (1) the dominance of calcareous benthic Foraminifera, such as lagoon-related Pseudononion atlanticum, Hanzawaia boueana, Bulimina marginata, Bolivina striatula, Elphidium poeyanum, together with several agglutinated species, including Arenoparrella mexicana, Gaudryina exilis, and Trochammina spp., common in coastal environments subject to wide salinity fluctuations. In contrast, smaller forms and higher species diversity characterized the assemblage at offshore stations. In winter, the presence of Buccella peruviana and Uvigerina peregrina at Santa Marta Cape suggest the possible transport of those species of Subantarctic Shelf Waters (SASW) origin. Foraminifera associated to Subtropical Shelf Water (STSW) were dominated by Globocassidulina subglobosa in both seasons. In summer, the occurrence of U. peregrina in the shallower stations suggested the influence of SACW nutrients brought up by upwelling of deeper waters. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

More than 30% of Buccella peruviana (D'Orbigny), Globocassidulina crassa porrecta (Earland & Heron-Allen), Cibicides mackannai (Galloway & Wissler) and C. refulgens (Montfort) indicate the presence of cold Sub Antarctic Shelf Water in winter, from 33.5 to 38.3 degrees S, deeper than 100 m, in the southern part of the study area. In summer, the abundance of this association decreases to less than 15% around 37.5-38.9 degrees S where two species (Globocassidulina subglobosa (Brady), Uvigerina peregrina (Cushman) take over. G. subglobosa, U. peregrina, and Hanzawaia boueana (D'Orbigny) are found at 27-33 degrees S in both seasons in less than 55 m deep in the northern part, and are linked with warm Subtropical Shelf Water and Tropical Water. Freshwater influence was signalized by high silicate concentration and by the presence of Pseudononion atlanticum (Cushman), Bolivina striatula (Cushman), Buliminella elegantissima (D'Orbigny), Bulimina elongata (D'Orbigny), Elphidium excavatum (Terquem), E. poeyanum (D'Orbigny), Ammobaculites exiguus (Cushman & Bronnimann), Arenoparrella mexicana (Kornfeld), Gaudryina exillis (Cushman & Bronnimann), Textularia earlandi (Parker) and thecamoebians in four sectors of the shelf. The presence of Bulimina marginata (D'Orbigny) between 34.1-32.8 degrees S in the winter and 34.2-32.7 degrees S in the summer indicates that the influence of the Subtropical Shelf Front on the sediment does not change seasonally, otherwise, the presence of Angulogerina angulosa (Williamson) in the winter, only in Mar del Plata (38.9 degrees S), show that Malvinas currents are not influencing the sediment in the summer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

More than 30% of Buccella peruviana (D'Orbigny), Globocassidulina crassa porrecta (Earland & Heron-Allen), Cibicides mackannai (Galloway & Wissler) and C. refulgens (Montfort) indicate the presence of cold Sub Antarctic Shelf Water in winter, from 33.5 to 38.3º S, deeper than 100 m, in the southern part of the study area. In summer, the abundance of this association decreases to less than 15% around 37.5-38.9º S where two species (Globocassidulina subglobosa (Brady), Uvigerina peregrina (Cushman) take over. G. subglobosa, U. peregrina, and Hanzawaia boueana (D'Orbigny) are found at 27-33º S in both seasons in less than 55 m deep in the northern part, and are linked with warm Subtropical Shelf Water and Tropical Water. Freshwater influence was signalized by high silicate concentration and by the presence of Pseudononion atlanticum (Cushman), Bolivina striatula (Cushman), Buliminella elegantissima (D'Orbigny), Bulimina elongata (D'Orbigny), Elphidium excavatum (Terquem), E. poeyanum (D'Orbigny), Ammobaculites exiguus (Cushman & Brönnimann), Arenoparrella mexicana (Kornfeld), Gaudryina exillis (Cushman & Brönnimann), Textularia earlandi (Parker) and thecamoebians in four sectors of the shelf. The presence of Bulimina marginata (D'Orbigny) between 34.1-32.8º S in the winter and 34.2-32.7º S in the summer indicates that the influence of the Subtropical Shelf Front on the sediment does not change seasonally, otherwise, the presence of Angulogerina angulosa (Williamson) in the winter, only in Mar del Plata (38.9º S), show that Malvinas currents are not influencing the sediment in the summer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the influence of nutrient-rich oceanic waters in comparison to the estuarine outflow from Santos Bay (SE Brazil) on copepod abundance and production on the adjacent inner shelf. Zooplankton samples were collected with a Multinet in spring 2005 and in summer 2006. Copepod biomass was derived from length-weight regressions, and growth rates were estimated from empirical models. Altogether, 58 copepod taxa were identified. The highest abundances were due to small-sized organisms including nauplii, oncaeids and copepodids of paracalanids and clausocalanids. Biomass and secondary production mirrored copepod abundance, with Temora copepodids accompanying the above-mentioned taxa as major contributors. The contribution of naupliar biomass and production was low (2.2 and 3.8% of the total, respectively). The influence of the Santos Bay outflow was observed only in spring, when Coastal Water (CW) dominated at the study site; whereas in summer the inner shelf was occupied by CW in the surface layer and the oceanic South Atlantic Central Water (SACW) in the bottom layer. The SACW intrusion had more of an influence for the increase in copepod production than the Santos Bay plume. The distribution and dynamics of the oceanic water masses seemed to be the most important influence on copepod diversity and production at this subtropical site.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sedimentological and benthic foraminifera analyses carried out on a core (length 4.15 in, collected at 22 degrees 56`31 `` S and 41 degrees 58`48 `` W, at a water depth of 43 in) sampled from the inner shelf of Cabo Frio, southeastern Brazilian continental margin, allowed identification of different hydrodynamic and productivity regimes related to sea-level fluctuations and/or climatic changes, during the last 9.4 ka cal BP. Prior to 7.0 ka cal BP, a less intense hydrodynamic and lower productivity regime occurred at lower sea levels and under drier climatic conditions. Between 7.0 and 5.0 ka cal BP, relatively stronger local oceanic circulation and relatively high productivity were observed, in a scenario of rising sea levels and more humid conditions. From 5.0 to 3.0 ka cal BP, bottom currents weakened and input of nutrients increased, with productivity levels similar to the previous phase at lower sea level and in a drier climate. From 3.0 ka cal BP up to the present, stronger hydrodynamic conditions and a higher productivity regime are linked to the establishment of the upwelling process in Cabo Frio. From 2.5 ka cal BP to the present, upwelling enhancement has been recognized, resulting from the combined action of NE winds and the intensification of the meandering pattern of the Brazil Current (BC). (C) 2008 Elsevier Ltd and INQUA. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Rio de la Plata waters form a low salinity tongue that affects the circulation, stratification and the distributions of nutrients and biological species over a wide extent of the adjacent continental shelf. The plume of coastal waters presents a seasonal meridional displacement reaching lower latitudes (28,S) during austral winter and 32 degrees S during summer. Historical data suggests that the wind causes the alongshore shift, with southwesterly (SW) winds forcing the plume to lower latitudes in winter while summer dominant northeasterly (NE) winds force its southward retreat. To establish the connection between wind and outflow variations on the distribution of the coastal waters, we conducted two quasi-synoptic surveys in the region of Plata influence on the continental shelf and slope of southeastern South America, between Mar del Plata, Argentina and the northern coast of Santa Catarina, Brazil. We observed that: (A) SW winds dominating in winter force the northward spreading of the plume to low latitudes even during low river discharge periods; (B) NE winds displace the plume southward and spread the low salinity waters offshore over the entire width of the continental shelf east of the Plata estuary. The southward retreat of the plume in summer leads to a volume decrease of low salinity waters over the shelf. This volume is compensated by an increase of Tropical waters, which dominate the northern shelf. The subsurface transition between Subantarctic and Subtropical Shelf Waters, the Subtropical Shelf Front, and the subsurface water mass distribution, however, present minor seasonal variations. Along shore winds also influence the dynamics and water mass variations along the continental shelf area. In areas under the influence of river discharge, Subtropical Shelf Waters are kept away from the coastal region. When low salinity waters retreat southward, NE winds induce a coastal upwelling system near Santa Marta Cape. In summer, solar radiation promotes the establishment of a strong thermocline that increases buoyancy and further enhances the offshore displacement of low salinity waters under the action of NE winds. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrographic data collected during surveys carried out in austral winter 2003 and summer 2004 are used to analyze the distributions of temperature (T) and salinity (S) over the continental shelf and slope of eastern South America between 27 degrees S and 39 degrees S. The water mass structure and the characteristics of the transition between subantarctic and subtropical shelf water (STSW), referred to as the subtropical shelf front (STSF), as revealed by the vertical structure of temperature and salinity are discussed. During both surveys, the front intensifies downward and extends southwestward from the near coastal zone at 33 degrees S to the shelf break at 36 degrees S. In austral winter subantarctic shelf water (SASW), derived from the northern Patagonia shelf, forms a vertically coherent cold wedge of low salinity waters that locally separate the outer shelf STSW from the fresher inner shelf Plata Plume Water (PPW) derived from the Rio de la Plata. Winter T-S diagrams and cross-shelf T and S distributions indicate that mixtures of PPW and tropical water only occur beyond the northernmost extent of pure SASW, and form STSW and an inverted thermocline characteristic of this region. In summer 2004, dilution of Tropical water (TW) occurs at two distinct levels: a warm near surface layer, associated to PPW-TW mixtures, similar to but significantly warmer than winter STSW, and a colder (T similar to 16 degrees C) salinity minimum layer at 40-50 m depth, created by SASW-STSW mixtures across the STSF. In winter, the salinity distribution controls the density structure creating a cross-shore density gradient, which prevents isopycnal mixing across the STSF. Temperature stratification in summer induces a sharp pycnocline providing cross-shelf isopycnal connections across the STSF. Cooling and freshening of the upper layer observed at stations collected along the western edge of the Brazil Current suggest offshore export of shelf waters. Low T and S filaments, evident along the shelf break in the winter data, suggest that submesoscale eddies may enhance the property exchange across the shelf break. These observations suggest that as the subsurface shelf waters converge at the STSF, they flow southward along the front and are expelled offshore, primarily along the front axis. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Community Climate System Model version 3 is used to analyse changes in water mass subduction rates in the South Atlantic Ocean over the 21st century. The model results are first compared to observations over 1950-2000, and shown to be rather good. The subduction rates do not change significantly over the 21st century, but the densities at which water masses form become significantly lighter. The strong westerly winds in this region do not change much, which suggests small changes to the rate at which the Atlantic sector of the Southern Ocean takes up heat and carbon dioxide over the 21st century.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The multi-scale synoptic circulation system in the southeastern Brazil (SEBRA) region is presented using a feature-oriented approach. Prevalent synoptic circulation structures, or ""features,"" are identified from previous observational studies. These features include the southward-flowing Brazil Current (BC), the eddies off Cabo Sao Tome (CST - 22 degrees S) and off Cabo Frio (CF - 23 degrees S), and the upwelling region off CF and CST. Their synoptic water-mass (T-S) structures are characterized and parameterized to develop temperature-salinity (T-S) feature models. Following [Gangopadhyay, A., Robinson, A.R., Haley, PJ., Leslie, W.J., Lozano, C.j., Bisagni, J., Yu, Z., 2003. Feature-oriented regional modeling and simulation (forms) in the gulf of maine and georges bank. Cont. Shelf Res. 23 (3-4), 317-353] methodology, a synoptic initialization scheme for feature-oriented regional modeling and simulation (FORMS) of the circulation in this region is then developed. First, the temperature and salinity feature-model profiles are placed on a regional circulation template and objectively analyzed with available background climatology in the deep region. These initialization fields are then used for dynamical simulations via the Princeton Ocean Model (POM). A few first applications of this methodology are presented in this paper. These include the BC meandering, the BC-eddy interaction and the meander-eddy-upwelling system (MEUS) simulations. Preliminary validation results include realistic wave-growth and eddy formation and sustained upwelling. Our future plan includes the application of these feature models with satellite, in-situ data and advanced data-assimilation schemes for nowcasting and forecasting the SEBRA region. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The temporal and spatial variation of Paralonchurus brasiliensis density (fish per m(2)) in relation to environmental factors was studied on the coasts of Ubatuba and Caraguatatuba, south-eastern Brazil. The fish were collected by shrimp fishery trawl on a monthly basis from January to December, 2002. Seven depths were previously established and for each one the temperature, salinity, organic matter content and grain size of the sediment (phi) was measured. The seasonal analysis of temperature and salinity indicated the presence of the water masses South Atlantic Central Water (SACW) and Coastal Waters (CW) acting in the study area. A total of 29,808 fish were collected during the study period. The highest densities were registered during the summer and autumn indicating an association with CW. The fish population moved to shallow depths during the intrusion of the cold water mass, SACW. The highest densities were registered in depths where the sediment composition ranged from fine sand to silt-clay. Thus, the temperature and type of the sediment are the main environmental factors which affect the spatial-temporal variation of P. brasiliensis density in south-eastern Brazil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The new Community Climate System Model, version 4 (CCSM4), provides a powerful tool to understand and predict the earth's climate system. Several aspects of the Southern Ocean in the CCSM4 are explored, including the surface climatology and interannual variability, simulation of key climate water masses (Antarctic Bottom Water, Subantarctic Mode Water, and Antarctic Intermediate Water), the transport and structure of the Antarctic Circumpolar Current, and interbasin exchange via the Agulhas and Tasman leakages and at the Brazil-Malvinas Confluence. It is found that the CCSM4 has varying degrees of accuracy in the simulation of the climate of the Southern Ocean when compared with observations. This study has identified aspects of the model that warrant further analysis that will result in a more comprehensive understanding of ocean-atmosphere-ice dynamics and interactions that control the earth's climate and its variability.