7 resultados para Waste use
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Hydrogen peroxide is a powerful oxidant that finds application in several areas, but most particularly in the treatment of industrial wastewaters. The aim of the present study was to investigate the effects of applied potential and electrolyte flow conditions on the in situ generation of hydrogen peroxide in an electrochemical flow-by reactor with a gas diffusion electrode (GDE). The electrolyses were performed in an aqueous acidic medium using a GDE constructed with conductive black graphite and polytetrafluoroethylene (80:20 w/w). Under laminar flow conditions (flow rate = 50 L/h), hydrogen peroxide was formed in a maximum yield of 414 mg/L after 2 h at -2.25 V vs Pt //Ag/AgCl (global rate constant = 3.1 mg/(L min); energy consumption = 22.1 kWh/kg). Under turbulent flow (300 L/h), the maximum yield obtained was 294 mg/L after 2 h at -1.75 V vs Pt//Ag/AgCl (global rate constant = 2.5 mg/ (L min); energy consumption = 30.1 kWh/kg).
Resumo:
The aim of this paper is to study the feasibility of using cellulose fibers obtained from an agricultural waste, hemp core (Cannabis Sativa L), through different new environmental friendly cooking processes for fiber-cement production. The physical and mechanical properties of the fiber reinforced concrete, which depend on the nature and morphology of the fibers, matrix properties and the interactions between them, must be kept between the limits required for its application. Therefore, the morphology of the fibers and how its use affects the flocculation, retention and drainage processes in the fiber-cement manufacture, and the mechanical and physical properties of the fiber-cement product have been studied. The use of pulp obtained by means of the hemp core cooking in ethanolamine at 60% concentration at 180 degrees C during 90 min resulted in the highest solids retention and the best mechanical properties among the studied hemp core pulps. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this study rice husk ash (RHA) and broiler bed ash from rice husk (BBA), two agricultural waste materials, have been assessed for use as partial cement replacement materials for application in lightweight concrete. Physical and chemical characteristics of RHA and BBA were first analyzed. Three similar types of lightweight concrete were produced, a control type in which the binder was just CEMI cement (CTL) and two other types with 10% cement replacement with, respectively, RHA and BBA. All types of similar lightweight concrete were prepared to present the same workability by adjusting the amount of superplasticizer. Properties of concrete investigated were compressive and flexural strength at different ages, absorption by capillarity, resistivity and resistance to chloride ion penetration (CTH method) and accelerated carbonation. Test results obtained for 10% cement replacement level in lightweight concrete indicate that although the addition of BBA conducted to lower performance in terms of the degradation indicative tests, RHA led to the enhancement of mechanical properties, especially early strength and also fast ageing related results, further contributing to sustainable construction with energy saver lightweight concrete.
Resumo:
On January 1 2008, Brazil included yet another element into its energy matrix: biodiesel. The predominant biodiesel production process involves a phase of transesterification that yields glycerol as a by-product. The use of this glycerol is limited since it is considered an unrefined raw material that must be refined for its various types of use. Several studies have addressed identification of possible uses for unrefined glycerol. Given the diversity of uses, an overview is necessary. The purpose of this work is to present alternatives currently being considered for the use of unrefined glycerol as a by-product of biodiesel production, aiming to contribute to the sustainable consolidation of the biofuel market. Exploratory research was carried out to identify these viable alternatives for the use of this by-product. The possibilities include the production of chemical products, fuel additives, production of hydrogen, development of fuel cells, ethanol or methanol production, animal feed, co-digestion and co-gasification, and waste treatment among others. The present research reveals that there are promising possibilities for the use of unrefined glycerol, which may help consolidate the sustainability of the biofuel market. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this paper is to present an analysis of the use of residual marble mixtures in the pig iron desulfurization process. The study involved the use of: marble waste, fluorspar, lime, and hot metal. Four mixtures were made and added to a liquid hot metal - with known chemical composition - at a temperature of 1450ºC. The mass of each element was calculated from its chemical analysis and compared with an industrial mixture. All of the four mixtures used in the experiments were stirred by a mechanical stirrer. Samples were collected by vacuum sampling for times of 5, 10, 15, 20, and 30 minutes, and analysis was performed to check sulfur variation in the bath with time. The results were analyzed and they verified that it was possible to use marble waste as a desulfurizer.
Resumo:
In this study rice husk ash (RHA) and broiler bed ash from rice husk (BBA), two agricultural waste materials, have been assessed for use as partial cement replacement materials for application in lightweight concrete. Physical and chemical characteristics of RHA and BBA were first analyzed. Three similar types of lightweight concrete were produced, a control type in which the binder was just CEMI cement (CTL) and two other types with 10% cement replacement with, respectively, RHA and BBA. All types of similar lightweight concrete were prepared to present the same workability by adjusting the amount of superplasticizer. Properties of concrete investigated were compressive and flexural strength at different ages, absorption by capillarity, resistivity and resistance to chloride ion penetration (CTH method) and accelerated carbonation. Test results obtained for 10% cement replacement level in lightweight concrete indicate that although the addition of BBA conducted to lower performance in terms of the degradation indicative tests, RHA led to the enhancement of mechanical properties, especially early strength and also fast ageing related results, further contributing to sustainable construction with energy saver lightweight concrete.
Resumo:
The aim of this paper is to verify the influence of composition variability of recycled aggregates (RA) of construction and demolition wastes (CDW) on the performance of concretes. Performance was evaluated building mathematical models for compressive strength, modulus of elasticity and drying shrinkage. To obtain such models, an experimental program comprising 50 concrete mixtures was carried out. Specimens were casted, tested and results for compressive strength, modulus of elasticity and drying shrinkage were statistically analyzed. Models inputs are CDW composition observed at seven Brazilian cities. Results confirm that using RA from CDW for concrete building is quite feasible, independently of its composition, once compressive strength and modulus of elasticity still reached considerable values. We concluded the variability presented by recycled aggregates of CDW does not compromise their use for concrete building. However, this information must be used with caution, and experimental tests should always be performed to certify concrete properties.