5 resultados para Wall materials

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: To investigate the effects of hypercholesterolemic diet on the collagen composition of urinary bladder wall. Materials and methods: Forty-five female 4-week-old Wistar rats were divided into three groups: 1) control group fed a normal diet (ND); 2) model of bladder outlet obstruction (BOO) group fed a ND; and 3) group fed a HCD (1.25% cholesterol). Total serum cholesterol, LDL cholesterol and body weight were assessed at baseline. Four weeks later, group 2 underwent a surgical procedure resulting in a partial BOO, while groups 1 and 3 underwent a sham similar surgical procedure. Six weeks later, all animals had their bladders removed; serum cholesterol and LDL cholesterol levels and body weights were measured. Morphological and morphometric analysis was performed by Picrosirius staining and collagen types I and III were identified by immunofluorescence. Statistical analysis was completed and significance was considered when p<0.05. Results: Rats fed an HCD exhibited a significant increase in LDL cholesterol levels (p<0.001) and body weight (p=0.017), when compared to the groups fed a ND during the ten-week study period. Moreover, the HCD induced morphological alterations of the bladder wall collagen, regarding thin collagen fibers and the amounts of type III collagen when compared to the control group (p=0.002 and p=0.016, respectively), resembling the process promoted in the BOO model. Conclusions: A hyper-cholesterolemic diet in Wistar rats promoted morphological changes of the bladder types of collagen, as well as increases in body weight and LDL cholesterol.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this work was to produce and characterize microcapsules of lycopene and to evaluate their stability in comparison with free lycopene. An oily dispersion of lycopene was encapsulated by complex coacervation using gelatin and pectin. Samples were analyzed at four different pH values (3, 3.5, 4 and 4.5) and three proportions of core (25, 50 and 100%). The moisture, water activity, solubility, hygroscopicity, encapsulation efficiency and stability of lycopene microcapsules kept at 10 and 25C were determined. The amount of lycopene in the microcapsule did not have a significant (P < 0.05) effect on water activity, hygroscopic characteristics or the efficiency of microencapsulation. The degradation of lycopene was linear, with an average loss of 14% per week. Therefore, despite the formation of microcapsules and the high values of encapsulation efficiency, the encapsulation method and the wall materials used in this work did not provide effective protection of the lycopene from degradation during storage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prosthetic meshes are commonly used to correct abdominal wall defects. However, the inflammatory reaction induced by these devices in the peritoneum is not completely understood. We hypothesized that nitric oxide (NO), produced by nitric oxide synthase 2 (NOS2) may modulate the response induced by mesh implants in the abdominal wall and, consequently, affect the outcome of the surgical procedure. Polypropylene meshes were implanted in the peritoneal side of the abdominal wall in wild-type and NOS2-deficient (NOS2(-/-)) mice. After 15 days tissues around the mesh implant were collected, and inflammatory markers (the cytokine interleukin 1 beta (IL-1 beta) and NO) and tissue remodeling (collagen and metalloproteinases (MMP) 2 and 9) were analyzed. The lack of NOS2-derived NO induced a higher incidence of visceral adhesions at the mesh implantation site compared with wild-type mice that underwent the same procedure (P < 0.05). Additionally, higher levels of IL-1 beta were present in the mesh-implanted NOS2(-/-) animals compared with control and wild-type mice. Mesh implantation induced collagen I and III deposition, but in smaller amounts in NOS2(-/-) mice. MMP-9 activity after the surgical procedure was similarly increased in both groups. Conversely, MMP-2 activity was unchanged in mesh-implanted wild-type mice, but was significantly increased in NOS2(-/-) mice (P < 0.01), due to decreased S-nitrosylation of the enzyme in these animals. We conclude that NOS2-derived NO is crucial for an adequate response to and integration of polypropylene mesh implants in the peritoneum. NO deficiency results in a prolonged inflammatory reaction to the mesh implant, and reduced collagen deposition may contribute to an increased incidence of visceral adhesions. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to evaluate, ex vivo, the nanoleakage in dentinal tubules, the linear infiltration of silver nitrate in the dentin wall/root-end filling material interface, and the presence of gaps in this interface in root-end cavities filled with 4 filling materials. Forty-eight disto-buccal root canals of maxillary molars were instrumented and filled. Retrograde cavities were prepared with ultrasonic points (apical 2 mm). The samples were divided into 2 control groups (n = 4) and 4 experimental groups (n = 10): Group I white mineral trioxide aggregate (MTA); Group II Super EBA; Group III Portland cement; and Group IV Sealer 26. After 1 week, the specimens were subjected to silver nitrate and prepared for SEM (backscattered electrons). In the apical-apical segment, an area with significantly higher leakage was observed for Super EBA, followed by Portland cement, MTA, and Sealer 26 (P = 0.0054). In the medium and cervical segments, all materials showed the same leakage behavior (P = 0.1815 and P = 0.1723, respectively). The linear infiltration at the dentin wall/root-end filling material interface was higher with Super EBA than the other groups. No differences in the percentage of gaps along the 3 mm of dentin wall/root-end filling material interface between the 4 materials were evident (P > 0.05). Nanoleakage occurred mainly in the apical segment of the samples, and Super EBA showed the highest values. The area and linear leakage were lower in the middle and coronal segments, regardless of the root-end filling material. No material perfectly sealed the root-end cavities, which allowed for the leakage occurrence. Microsc. Res. Tech. 75:796800, 2012. (C) 2011 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic interactions between the [Cu(opba)]2- anions (where opba is orthophenylenebis (oxamato)) and single-wall carbon nanotubes (SWCNTs) were investigated by resonance Raman spectroscopy. The opba can form molecular magnets, and the interactions of opba with SWCNTs can produce materials with very different magnetic/electronic properties. It is observed that the electronic interaction shows a dependence on the SWCNT diameter independent of whether they are metallic or semiconducting, although the interaction is stronger for metallic tubes. The interaction also is dependent on the amount of complex that is probably adsorbed on the carbon surface of the SWCNTs. Some charge transfer can be also occurring between the metallic complex and the SWCNTs. Copyright (c) 2012 John Wiley & Sons, Ltd.