4 resultados para WM

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The occurrence of white matter (WM) abnormalities in psychotic disorders has been suggested by several studies investigating brain pathology and diffusion tensor measures, but evidence assessing regional WM morphometry is still scarce and conflicting. In the present study, 122 individuals with first-episode psychosis (FEP) (62 fulfilling criteria for schizophrenia/schizophreniform disorder, 26 psychotic bipolar I disorder, and 20 psychotic major depressive disorder) underwent magnetic resonance imaging, as well as 94 epidemiologically recruited controls. Images were processed with the Statistical Parametric Mapping (SPM2) package, and voxel-based morphometry was used to compare groups (t-test) and subgroups (ANOVA). Initially, no regional WM abnormalities were observed when both groups (overall FEP group versus controls) and subgroups (i.e., schizophrenia/schizophreniform, psychotic bipolar I disorder, psychotic depression, and controls) were compared. However, when the voxelwise analyses were repeated excluding subjects with comorbid substance abuse or dependence, the resulting statistical maps revealed a focal volumetric reduction in right frontal WM, corresponding to the right middle frontal gyral WM/third subcomponent of the superior longitudinal fasciculus, in subjects with schizophrenia/schizophreniform disorder (n = 40) relative to controls (n = 89). Our results suggest that schizophrenia/schizophreniform disorder is associated with right frontal WM volume decrease at an early course of the illness. (c) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: schizophrenia's endophenotipic profile is not only generally complex, but often varies from case to case. The perspective of trying to define specific anatomic correlates of the syndrome has led to disappointing results. In that context, neurophysiologic hypotheses (e. g. glutamatergic hypothesis) and connectivity hypotheses became prominent. Nevertheless, despite their commitment to the principle of denying 'localist' views and approaching the syndrome's endophenotype from a whole brain perspective, efforts to integrate both have not flourished at this moment in time. Objectives: This paper aims to introduce a new etiological model that integrates the glutamatergic and the WM (WM) hypotheses of schizophrenia's etiology. This model proposes to serve as a framework in order to relate to patterns of brain abnormalities from the onset of the syndrome to stages of advanced chronification. Highlights: Neurotransmitter abnormalities forego noticeable WM abnormalities. The former, chiefly represented by NMDAR hypo-function and associated molecular cascades, is related to the first signs of cell loss. This process is both directly and indirectly integrated to the underpinning of WM structural abnormalities; not only is the excess of glutamate toxic to the WM, but its disruption is associated to the expression of known genetic risk factors (e. g., NRG-1). A second level of the model develops the idea that abnormal neurotransmission within specific neural populations ('motifs') impair particular cognitive abilities, while subsequent WM structural abnormalities impair the integration of brain functions and multimodality. As a result of this two-stage dynamic, the affected individual progresses from experiencing specific cognitive and psychological deficits, to a condition of cognitive and existential fragmentation, linked to hardly reversible decreases in psychosocial functioning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuroimaging studies suggest anterior-limbic structural brain abnormalities in patients with bipolar disorder (BD), but few studies have shown these abnormalities in unaffected but genetically liable family members. In this study, we report morphometric correlates of genetic risk for BD using voxel-based morphometry. In 35 BD type I (BD-I) patients, 20 unaffected first-degree relatives (UAR) of BD patients and 40 healthy control subjects underwent 3 T magnetic resonance scanner imaging. Preprocessing of images used DARTEL (diffeomorphic anatomical registration through exponentiated lie algebra) for voxel-based morphometry in SPM8 (Wellcome Department of Imaging Neuroscience, London, UK). The whole-brain analysis revealed that the gray matter (GM) volumes of the left anterior insula and right inferior frontal gyrus showed a significant main effect of diagnosis. Multiple comparison analysis showed that the BD-I patients and the UAR subjects had smaller left anterior insular GM volumes compared with the healthy subjects, the BD-I patients had smaller right inferior frontal gyrus compared with the healthy subjects. For white matter (WM) volumes, there was a significant main effect of diagnosis for medial frontal gyrus. The UAR subjects had smaller right medial frontal WM volumes compared with the healthy subjects. These findings suggest that morphometric brain abnormalities of the anterior-limbic neural substrate are associated with family history of BD, which may give insight into the pathophysiology of BD, and be a potential candidate as a morphological endophenotype of BD. Molecular Psychiatry (2012) 17, 412-420; doi: 10.1038/mp.2011.3; published online 15 February 2011

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomass burning represents one of the largest sources of particulate matter to the atmosphere, which results in a significant perturbation to the Earth’s radiative balance coupled with serious negative impacts on public health. Globally, biomass burning aerosols are thought to exert a small warming effect of 0.03 Wm-2, however the uncertainty is 4 times greater than the central estimate. On regional scales, the impact is substantially greater, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months (usually from August-October). Furthermore, a growing number of people live within the Amazon region, which means that they are subject to the deleterious effects on their health from exposure to substantial volumes of polluted air. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil, are presented here. A suite of instrumentation was flown on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft and was supported by ground based measurements, with extensive measurements made in Porto Velho, Rondonia. The aircraft sampled a range of conditions with sampling of fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate.