4 resultados para WELL STRUCTURES
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Optical properties of intentionally disordered multiple quantum well (QW) system embedded in a wide AlGaAs parabolic well were investigated by photoluminescence (PL) measurements as functions of the laser excitation power and the temperature. The characterization of the carriers localized in the individual wells was allowed due to the artificial disorder that caused spectral separation of the photoluminescence lines emitted by different wells. We observed that the photoluminescence peak intensity from each quantum well shifted to high energy as the excitation power was increased. This blue-shift is associated with the filling of localized states in the valence band tail. We also found that the dependence of the peak intensity on the temperature is very sensitive to the excitation power. The temperature dependence of the photoluminescence peak energy from each QW was well fitted using a model that takes into account the thermal redistribution of the localized carriers. Our results demonstrate that the band tails in the studied structures are caused by alloy potential fluctuations and the band tail states dominate the emission from the peripheral wells. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4730769]
Resumo:
The use of laser light to modify the material's surface or bulk as well as to induce changes in the volume through a chemical reaction has received great attention in the last few years, due to the possibility of tailoring the material's properties aiming at technological applications. Here, we report on recent progress of microstructuring and microfabrication in polymeric materials by using femtosecond lasers. In the first part, we describe how polymeric materials' micromachining, either on the surface or bulk, can be employed to change their optical and chemical properties promising for fabricating waveguides, resonators, and self-cleaning surfaces. In the second part, we discuss how two-photon absorption polymerization can be used to fabricate active microstructures by doping the basic resin with molecules presenting biological and optical properties of interest. Such microstructures can be used to fabricate devices with applications in optics, such as microLED, waveguides, and also in medicine, such as scaffolds for tissue growth.
Resumo:
Structural durability is an important criterion that must be evaluated for every type of structure. Concerning reinforced concrete members, chloride diffusion process is widely used to evaluate durability, especially when these structures are constructed in aggressive atmospheres. The chloride ingress triggers the corrosion of reinforcements; therefore, by modelling this phenomenon, the corrosion process can be better evaluated as well as the structural durability. The corrosion begins when a threshold level of chloride concentration is reached at the steel bars of reinforcements. Despite the robustness of several models proposed in literature, deterministic approaches fail to predict accurately the corrosion time initiation due the inherent randomness observed in this process. In this regard, structural durability can be more realistically represented using probabilistic approaches. This paper addresses the analyses of probabilistic corrosion time initiation in reinforced concrete structures exposed to chloride penetration. The chloride penetration is modelled using the Fick's diffusion law. This law simulates the chloride diffusion process considering time-dependent effects. The probability of failure is calculated using Monte Carlo simulation and the first order reliability method, with a direct coupling approach. Some examples are considered in order to study these phenomena. Moreover, a simplified method is proposed to determine optimal values for concrete cover.
Resumo:
Excitonic dynamics in a hybrid dot-well system composed of InAs quantum dots (QDs) and an InGaAs quantum well (QW) is studied by means of femtosecond pump-probe reflection and continuous wave (cw) photoluminescence (PL) spectroscopy. The system is engineered to bring the QW ground exciton state into resonance with the third QD excited state. The resonant tunneling rate is varied by changing the effective barrier thickness between the QD and QW layers. This strongly affects the exciton dynamics in these hybrid structures as compared to isolated QW or QD systems. Optically measured decay times of the coupled system demonstrate dramatically different response to temperature change depending on the strength of the resonant tunneling or coupling strength. This reflects a competition between purely quantum mechanical and thermodynamical processes.