9 resultados para WAY-100635
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The medial amygdaloid nucleus (MeA) is a sub-region of the amygdaloid complex that has been described as participating in food intake regulation. Serotonin has been known to play an important role in appetite and food intake regulation. Moreover, serotonin 5-HT2C and 5-HT1A receptors appear to be critical in food intake regulation. We investigated the role of the serotoninergic system in the MeA on feeding behavior regulation in rats. The current study examined the effects on feeding behavior regulation of the serotonin reuptake inhibitor, zimelidine, administered directly into the MeA or given systemically, and the serotoninergic receptors mediating its effect. Our results showed that microinjection of zimelidine (0.2, 2 and 20 nmol/100 nL) into the MeA evoked dose dependent hypophagic effects in fasted rats. The selective 5-HT1A receptor antagonist WAY-100635 (18.5 nmol/100 nL) or the 5-HT1B receptor antagonist SB-216641 microinjected bilaterally into the MeA did not change the hypophagic effect evoked by local MeA zimelidine treatment. However, microinjection of the selective 5-HT2C receptor antagonist SB-242084 (10 nmol/100 nL) was able to block the hypophagic effect of zimelidine. Moreover, microinjection of the 5-HT2C receptor antagonist SB-242084 into the MeA also blocked the hypophagic effect caused by zimelidine administered systemically. These results suggest that MeA 5-HT2C receptors modulate the hypophagic effect caused by local MeA administration as well as by systemic zimelidine administration. Furthermore, 5-HT2C into the MeA could be a potential target for systemic administration of zimelidine. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Changes in brain-derived neurotrophic factor (BDNF)mediated signaling in the hippocampus have been implicated in the etiology of depression and in the mode of action of antidepressant drugs. There is also evidence from animal studies to suggest that BDNF-induced changes in the hippocampus may play a role in another stress-related pathology: anxiety. However, it is still unknown whether this neurotrophin plays a differential role in defensive responses associated with distinguished subtypes of anxiety disorders found in the clinic, such as generalized anxiety and panic disorder. In the present study, we investigated the effect of an acute BDNF injection into the rat dorsal hippocampus (DH) on inhibitory avoidance acquisition and escape expression measured in the elevated T-maze (ETM). We also assessed whether serotonergic neurotransmission may account for such effects. Intra-DH BDNF injection (200 pg) facilitated inhibitory avoidance in ETM. BDNF was equally anxiogenic in the light/dark transition test. Preadministration of the 5-HT1A receptor antagonist WAY-100635 fully counteracted the anxiogenic effect of BDNF in both tests. Intra-DH midazolam administration (10 nmol) impaired avoidance acquisition in ETM, suggesting an anxiolytic effect. Therefore, in the DH, facilitation of BDNF signaling seems to enhance 5-HT1A receptor-mediated neurotransmission to exert an anxiogenic effect associated with generalized anxiety. Behavioural Pharmacology 23:80-88 (C) 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Resumo:
Background: Ankle-brachial index (ABI) can access peripheral artery disease and predict mortality in prevalent patients on hemodialysis. However, ABI has not yet been tested in incident patients, who present significant mortality. Typically, ABI is measured by Doppler, which is not always available, limiting its use in most patients. We therefore hypothesized that ABI, evaluated by a simplified method, can predict mortality in an incident hemodialysis population. Methodology/Principal Findings: We studied 119 patients with ESRD who had started hemodialysis three times weekly. ABI was calculated by using two oscillometric blood pressure devices simultaneously. Patients were followed until death or the end of the study. ABI was categorized in two groups normal (0.9-1.3) or abnormal (<0.9 and >1.3). There were 33 deaths during a median follow-up of 12 months (from 3 to 24 months). Age (1 year) (hazard of ratio, 1.026; p = 0.014) and ABI abnormal (hazard ratio, 3.664; p = 0.001) were independently related to mortality in a multiple regression analysis. Conclusions: An easy and inexpensive technique to measure ABI was tested and showed to be significant in predicting mortality. Both low and high ABI were associated to mortality in incident patients on hemodialysis. This technique allows nephrologists to identify high-risk patients and gives the opportunity of early intervention that could alter the natural progression of this population.
Resumo:
Context. The ESO public survey VISTA variables in the Via Lactea (VVV) started in 2010. VVV targets 562 sq. deg in the Galactic bulge and an adjacent plane region and is expected to run for about five years. Aims. We describe the progress of the survey observations in the first observing season, the observing strategy, and quality of the data obtained. Methods. The observations are carried out on the 4-m VISTA telescope in the ZYJHK(s) filters. In addition to the multi-band imaging the variability monitoring campaign in the K-s filter has started. Data reduction is carried out using the pipeline at the Cambridge Astronomical Survey Unit. The photometric and astrometric calibration is performed via the numerous 2MASS sources observed in each pointing. Results. The first data release contains the aperture photometry and astrometric catalogues for 348 individual pointings in the ZYJHK(s) filters taken in the 2010 observing season. The typical image quality is similar to 0 ''.9-1 ''.0. The stringent photometric and image quality requirements of the survey are satisfied in 100% of the JHK(s) images in the disk area and 90% of the JHK(s) images in the bulge area. The completeness in the Z and Y images is 84% in the disk, and 40% in the bulge. The first season catalogues contain 1.28 x 10(8) stellar sources in the bulge and 1.68 x 10(8) in the disk area detected in at least one of the photometric bands. The combined, multi-band catalogues contain more than 1.63 x 10(8) stellar sources. About 10% of these are double detections because of overlapping adjacent pointings. These overlapping multiple detections are used to characterise the quality of the data. The images in the JHK(s) bands extend typically similar to 4 mag deeper than 2MASS. The magnitude limit and photometric quality depend strongly on crowding in the inner Galactic regions. The astrometry for K-s = 15-18 mag has rms similar to 35-175 mas. Conclusions. The VVV Survey data products offer a unique dataset to map the stellar populations in the Galactic bulge and the adjacent plane and provide an exciting new tool for the study of the structure, content, and star-formation history of our Galaxy, as well as for investigations of the newly discovered star clusters, star-forming regions in the disk, high proper motion stars, asteroids, planetary nebulae, and other interesting objects.
Resumo:
Context. The Milky Way (MW) bulge is a fundamental Galactic component for understanding the formation and evolution of galaxies, in particular our own. The ESO Public Survey VISTA Variables in the Via Lactea is a deep near-IR survey mapping the Galactic bulge and southern plane. Particularly for the bulge area, VVV is covering similar to 315 deg(2). Data taken during 2010 and 2011 covered the entire bulge area in the JHKs bands. Aims. We used VVV data for the whole bulge area as a single and homogeneous data set to build for the first time a single colour-magnitude diagram (CMD) for the entire Galactic bulge. Methods. Photometric data in the JHK(s) bands were combined to produce a single and huge data set containing 173 150 467 sources in the three bands, for the similar to 315 deg(2) covered by VVV in the bulge. Selecting only the data points flagged as stellar, the total number of sources is 84 095 284. Results. We built the largest colour-magnitude diagrams published up to date, containing 173.1+ million sources for all data points, and more than 84.0 million sources accounting for the stellar sources only. The CMD has a complex shape, mostly owing to the complexity of the stellar population and the effects of extinction and reddening towards the Galactic centre. The red clump (RC) giants are seen double in magnitude at b similar to -8 degrees-10 degrees, while in the inner part (b similar to -3 degrees) they appear to be spreading in colour, or even splitting into a secondary peak. Stellar population models show the predominance of main-sequence and giant stars. The analysis of the outermost bulge area reveals a well-defined sequence of late K and M dwarfs, seen at (J - K-s) similar to 0.7-0.9 mag and K-s greater than or similar to 14 mag. Conclusions. The interpretation of the CMD yields important information about the MW bulge, showing the fingerprint of its structure and content. We report a well-defined red dwarf sequence in the outermost bulge, which is important for the planetary transit searches of VVV. The double RC in magnitude seen in the outer bulge is the signature of the X-shaped MW bulge, while the spreading of the RC in colour, and even its splitting into a secondary peak, are caused by reddening effects. The region around the Galactic centre is harder to interpret because it is strongly affected by reddening and extinction.
Resumo:
Anderson MIYOSHI, Daniela FREITAS, Luciana RIBEIRO, Jane E. GABRIEL, Sophie LECLERCQ, Maricê N. OLIVEIRA, and Valeria D. GUIMARÃES were recipients of a CAPES fellowship (project CAPESCOFECUB #319II). Luis BERMUDEZ and Sébastien NOUAILLE were recipients of a fellowship from the French Ministry of Education and Research. INRA and Région IledeFrance also financed L. BERMUDEZ and V. GUIMARAES. Cathy CHARLIER is recipient of a fellowship from INRA and Région Bretagne.
Resumo:
The present star formation rate (SFR) in the inner Galaxy is puzzling for the chemical evolution models (CEM). No static CEM is able to reproduce the peak of the SFR in the 4 kpc ring. The main reason is probably a shortage of gas, which could be due to the dynamical effects produced by the galactic bar, not considered by these models. We developed a CEM that includes radial gas flows in order to mimic the effects of the galactic bar in the first 5 kpc of the galactic disk. In this model, the star formation (SF) is a two-step process: first, the diffuse gas forms molecular clouds. Then, stars form from cloud-cloud collisions or by the interaction between massive stars and the molecular gas. The former is called spontaneous and the latter induced SF. The mass in the different phases of each region changes by the processes associated with the stellar formation and death by: the SF due to spontaneous fragmentation of gas in the halo; formation of gas clouds in the disk from the diffuse gas; induced SF in the disk due to the interaction between massive stars and gas clouds; and finally, the restitution of the diffuse gas associated to these process of cloud and star formation. In the halo, the star formation rate for the diffuse gas follows a Schmidt law with a power n = 1.5. In the disk, the stars form in two steps: first, molecular clouds are formed from the diffuse gas also following a Schmidt law with n=1.5 and a proportionality factor. Including a specific pattern of radial gas flows, the CEM is able to reproduce with success the peak in the SFR at 4 kpc (fig. 1).
Resumo:
In many countries buildings are responsible for a substantial part of the energy consumption, nd it varies according to their energetic and environmental performances. The potential for major reductions in buildings consumption have bee well documented in Brazil. Opportunities have been identified throughout the life cycle of the buildings, due of projects in diverse locations without the proper adjustments. This article offers a reflection about project processes and how its understanding can be conducted in an integrated way, favoring the use of natural resources and lowering energy consumption. It concludes by indicating that the longest phase in the life cycle of a building is also the phase responsible for its largest energy consumption, not only because of its duration but also for the interaction with the end user. Therefore, in order to harvest the energy cost reduction potential from future buildings designers need a holistic view of the surrounding, end users, materials and methodologies.