8 resultados para W.H. Glenny Sons and Co.

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transition-metal (TM)-doped diluted magnetic oxides (DMOs) have attracted attention from both experimental and theoretical points of view due to their potential use in spintronics towards new nanostructured devices and new technologies. In the present work, we study the magnetic properties of Sn0.96TM0.04O2 and Sn0.96TM0.04O1.98(V (O))(0.02), where TM = Fe and Co, focusing in particular in the role played by the presence of O vacancies nearby the TM. The calculated total energy as a function of the total magnetic moment per cell shows a magnetic metastability, corresponding to a ground state, respectively, with 2 and 1 mu(B)/cell, for Fe and Co. Two metastable states, with 0 and 4 mu(B)/cell were found for Fe, and a single value, 3 mu(B)/cell, for Co. The spin-crossover energies (E (S)) were calculated. The values are E (S) (0/2) = 107 meV and E (S) (4/2) = 25 meV for Fe. For Co, E (S) (3/1) = 36 meV. By creating O vacancies close to the TM site, we show that the metastablity and E (S) change. For iron, a new state appears, and the state with zero magnetic moment disappears. The ground state is 4 mu(B)/cell instead of 2 mu(B)/cell, and the energy E (S) (2/4) is 30 meV. For cobalt, the ground state is then found with 3 mu(B)/cell and the metastable state with 1 mu(B)/cell. The spin-crossover energy E (S) (1/3) is 21 meV. Our results suggest that these materials may be used in devices for spintronic applications that require different magnetization states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe work in which gold nanoparticles were formed in diamond-like carbon (DLC), thereby generating a Au-DLC nanocomposite. A high-quality, hydrogen-free DLC thin film was formed by filtered vacuum arc plasma deposition, into which gold nanoparticles were introduced using two different methods. The first method was gold ion implantation into the DLC film at a number of decreasing ion energies, distributing the gold over a controllable depth range within the DLC. The second method was co-deposition of gold and carbon, using two separate vacuum arc plasma guns with suitably interleaved repetitive pulsing. Transmission electron microscope images show that the size of the gold nanoparticles obtained by ion implantation is 3-5 nm. For the Au-DLC composite obtained by co-deposition, there were two different nanoparticle sizes, most about 2 nm with some 6-7 nm. Raman spectroscopy indicates that the implanted sample contains a smaller fraction of sp(3) bonding for the DLC, demonstrating that some sp(3) bonds are destroyed by the gold implantation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4757029]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Lower respiratory tract infection (LRTI) is a major cause of pediatric morbidity and mortality, especially among non-affluent communities. In this study we determine the impact of respiratory viruses and how viral co-detections/infections can affect clinical LRTI severity in children in a hospital setting. Methods Patients younger than 3 years of age admitted to a tertiary hospital in Brazil during the months of high prevalence of respiratory viruses had samples collected from nasopharyngeal aspiration. These samples were tested for 13 different respiratory viruses through real-time PCR (rt-PCR). Patients were followed during hospitalization, and clinical data and population characteristics were collected during that period and at discharge to evaluate severity markers, especially length of hospital stay and oxygen use. Univariate regression analyses identified potential risk factors and multivariate logistic regressions were used to determine the impact of specific viral detections as well as viral co-detections in relation to clinical outcomes. Results We analyzed 260 episodes of LRTI with a viral detection rate of 85% (n = 222). Co-detection was observed in 65% of all virus-positive episodes. The most prevalent virus was Respiratory Syncytial Virus (RSV) (54%), followed by Human Metapneumovirus (hMPV) (32%) and Human Rhinovirus (HRV) (21%). In the multivariate models, infants with co-detection of HRV + RSV stayed 4.5 extra days (p = 0.004), when compared to infants without the co-detection. The same trends were observed for the outcome of days of supplemental oxygen use. Conclusions Although RSV remains as the main cause of LRTI in infants our study indicates an increase in the length of hospital stay and oxygen use in infants with HRV detected by RT-PCR compared to those without HRV. Moreover, one can speculate that when HRV is detected simultaneously with RSV there is an additive effect that may be reflected in more severe clinical outcome. Also, our study identified a significant number of children infected by recently identified viruses, such as hMPV and Human Bocavirus (HBov), and this is a novel finding for poor communities from developing countries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the results of airborne measurements of carbon monoxide (CO) and aerosol particle number concentration (CN) made during the Balan double dagger o Atmosf,rico Regional de Carbono na Amazonia (BARCA) program. The primary goal of BARCA is to address the question of basin-scale sources and sinks of CO2 and other atmospheric carbon species, a central issue of the Large-scale Biosphere-Atmosphere (LBA) program. The experiment consisted of two aircraft campaigns during November-December 2008 (BARCA-A) and May-June 2009 (BARCA-B), which covered the altitude range from the surface up to about 4500 m, and spanned most of the Amazon Basin. Based on meteorological analysis and measurements of the tracer, SF6, we found that airmasses over the Amazon Basin during the late dry season (BARCA-A, November 2008) originated predominantly from the Southern Hemisphere, while during the late wet season (BARCA-B, May 2009) low-level airmasses were dominated by northern-hemispheric inflow and mid-tropospheric airmasses were of mixed origin. In BARCA-A we found strong influence of biomass burning emissions on the composition of the atmosphere over much of the Amazon Basin, with CO enhancements up to 300 ppb and CN concentrations approaching 10 000 cm(-3); the highest values were in the southern part of the Basin at altitudes of 1-3 km. The Delta CN/Delta CO ratios were diagnostic for biomass burning emissions, and were lower in aged than in fresh smoke. Fresh emissions indicated CO/CO2 and CN/CO emission ratios in good agreement with previous work, but our results also highlight the need to consider the residual smoldering combustion that takes place after the active flaming phase of deforestation fires. During the late wet season, in contrast, there was little evidence for a significant presence of biomass smoke. Low CN concentrations (300-500 cm(-3)) prevailed basinwide, and CO mixing ratios were enhanced by only similar to 10 ppb above the mixing line between Northern and Southern Hemisphere air. There was no detectable trend in CO with distance from the coast, but there was a small enhancement of CO in the boundary layer suggesting diffuse biogenic sources from photochemical degradation of biogenic volatile organic compounds or direct biological emission. Simulations of CO distributions during BARCA-A using a range of models yielded general agreement in spatial distribution and confirm the important contribution from biomass burning emissions, but the models evidence some systematic quantitative differences compared to observed CO concentrations. These mismatches appear to be related to problems with the accuracy of the global background fields, the role of vertical transport and biomass smoke injection height, the choice of model resolution, and reliability and temporal resolution of the emissions data base.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introducing nitrogen-fixing tree species in fast-growing eucalypt plantations has the potential to improve soil nitrogen availability compared with eucalypt monocultures. Whether or not the changes in soil nutrient status and stand structure will lead to mixtures that out-yield monocultures depends on the balance between positive interactions and the negative effects of interspecific competition, and on their effect on carbon (C) uptake and partitioning. We used a C budget approach to quantify growth, C uptake and C partitioning in monocultures of Eucalyptus grandis (W. Hill ex Maiden) and Acacia mangium (Willd.) (treatments E100 and A100, respectively), and in a mixture at the same stocking density with the two species at a proportion of 1 : 1 (treatment MS). Allometric relationships established over the whole rotation, and measurements of soil CO2 efflux and aboveground litterfall for ages 4-6 years after planting were used to estimate aboveground net primary production (ANPP), total belowground carbon flux (TBCF) and gross primary production (GPP). We tested the hypotheses that (i) species differences for wood production between E. grandis and A. mangium monocultures were partly explained by different C partitioning strategies, and (ii) the observed lower wood production in the mixture compared with eucalypt monoculture was mostly explained by a lower partitioning aboveground. At the end of the rotation, total aboveground biomass was lowest in A100 (10.5 kg DM m(-2)), intermediate in MS (12.2 kg DM m(-2)) and highest in E100 (13.9 kg DM m(-2)). The results did not support our first hypothesis of contrasting C partitioning strategies between E. grandis and A. mangium monocultures: the 21% lower growth (delta B-w) in A100 compared with E100 was almost entirely explained by a 23% lower GPP, with little or no species difference in ratios such as TBCF/GPP, ANPP/TBCF, delta B-w/ANPP and delta B-w/GPP. In contrast, the 28% lower delta B-w in MS than in E100 was explained both by a 15% lower GPP and by a 15% lower fraction of GPP allocated to wood growth, thus partially supporting our second hypothesis: mixing the two species led to shifts in C allocations from above- to belowground, and from growth to litter production, for both species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZnO and doped M:ZnO (M = V, Fe and Co) nanostructures were synthesized by microwave hydrothermal synthesis using a low temperature route without addition of any surfactant. The transition metal ions were successfully doped in small amount (3% mol) into ZnO structure. Analysis by X-ray diffraction reveals the formation of ZnO with the hexagonal (wurtzite-type) crystal structure for all the samples. The as-obtained samples showed a similar flower-like morphology except for Fe:ZnO samples, which presented a plate-like morphology. The photocatalytic performance for Rhodamine B (RhB) degradation confirmed that the photoactivity of M:ZnO nanostructures decreased for all dopants in structure, according to their eletronegativity. Photoluminescence spectroscopy was employed to correlate M:ZnO structure with its photocatalytical properties. It was suggested that transition metal ions in ZnO lattice introduce defects that act as trapping or recombination centers for photogenerated electrons and holes, making it impossible for them reach the surface and promote the photocatalytical process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Tobacco and cannabis use are strongly interrelated, but current national and international cessation programs typically focus on one substance, and address the other substance either only marginally or not at all. This study aimed to identify the demand for, and describe the development and content of, the first integrative group cessation program for co-smokers of cigarettes and cannabis. Methods First, a preliminary study using expert interviews, user focus groups with (ex-)smokers, and an online survey was conducted to investigate the demand for, and potential content of, an integrative smoking cessation program (ISCP) for tobacco and cannabis co-smokers. This study revealed that both experts and co-smokers considered an ISCP to be useful but expected only modest levels of readiness for participation.Based on the findings of the preliminary study, an interdisciplinary expert team developed a course concept and a recruitment strategy. The developed group cessation program is based on current treatment techniques (such as motivational interviewing, cognitive behavioural therapy, and self-control training) and structured into six course sessions.The program was evaluated regarding its acceptability among participants and course instructors. Results Both the participants and course instructors evaluated the course positively. Participants and instructors especially appreciated the group discussions and the modules that were aimed at developing personal strategies that could be applied during simultaneous cessation of tobacco and cannabis, such as dealing with craving, withdrawal, and high-risk situations. Conclusions There is a clear demand for a double cessation program for co-users of cigarettes and cannabis, and the first group cessation program tailored for these users has been developed and evaluated for acceptability. In the near future, the feasibility of the program will be evaluated. Trial registration Current Controlled Trials ISRCTN15248397