11 resultados para Vorbrüggen glycosylation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Abstract Background All organisms living under aerobic atmosphere have powerful mechanisms that confer their macromolecules protection against oxygen reactive species. Microorganisms have developed biomolecule-protecting systems in response to starvation and/or oxidative stress, such as DNA biocrystallization with Dps (DNA-binding protein from starved cells). Dps is a protein that is produced in large amounts when the bacterial cell faces harm, which results in DNA protection. In this work, we evaluated the glycosylation in the Dps extracted from Salmonella enterica serovar Typhimurium. This Dps was purified from the crude extract as an 18-kDa protein, by means of affinity chromatography on an immobilized jacalin column. Results The N-terminal sequencing of the jacalin-bound protein revealed 100% identity with the Dps of S. enterica serovar Typhimurium. Methyl-alpha-galactopyranoside inhibited the binding of Dps to jacalin in an enzyme-linked lectin assay, suggesting that the carbohydrate recognition domain (CRD) of jacalin is involved in the interaction with Dps. Furthermore, monosaccharide compositional analysis showed that Dps contained mannose, glucose, and an unknown sugar residue. Finally, jacalin-binding Dps was detected in larger amounts during the bacterial earlier growth periods, whereas high detection of total Dps was verified throughout the bacterial growth period. Conclusion Taken together, these results indicate that Dps undergoes post-translational modifications in the pre- and early stationary phases of bacterial growth. There is also evidence that a small mannose-containing oligosaccharide is linked to this bacterial protein.
Resumo:
The respiration of metal oxides by the bacterium Geobacter sulfurreducens requires the assembly of a small peptide (the GS pilin) into conductive filaments termed pili. We gained insights into the contribution of the GS pilin to the pilus conductivity by developing a homology model and performing molecular dynamics simulations of the pilin peptide in vacuo and in solution. The results were consistent with a predominantly helical peptide containing the conserved a-helix region required for pilin assembly but carrying a short carboxy-terminal random-coiled segment rather than the large globular head of other bacterial pilins. The electronic structure of the pain was also explored from first principles and revealed a biphasic charge distribution along the pilin and a low electronic HOMO-LUMO gap, even in a wet environment. The low electronic band gap was the result of strong electrostatic fields generated by the alignment of the peptide bond dipoles in the pilin's alpha-helix and by charges from ions in solution and amino acids in the protein. The electronic structure also revealed some level of orbital delocalization in regions of the pilin containing aromatic amino acids and in spatial regions of high resonance where the HOMO and LUMO states are, which could provide an optimal environment for the hopping of electrons under thermal fluctuations. Hence, the structural and electronic features of the pilin revealed in these studies support the notion of a pilin peptide environment optimized for electron conduction.
Resumo:
Prokineticin receptors (PROKR) are G protein-coupled receptors (GPCR) that regulate diverse biological processes, including olfactory bulb neurogenesis and GnRH neuronal migration. Mutations in PROKR2 have been described in patients with varying degrees of GnRH deficiency and are located in diverse functional domains of the receptor. Our goal was to determine whether variants in the first intracellular loop (ICL1) of PROKR2 (R80C, R85C, and R85H) identified in patients with hypogonadotropic hypogonadism interfere with receptor function and to elucidate the mechanisms of these effects. Because of structural homology among GPCR, clarification of the role of ICL1 in PROKR2 activity may contribute to a better understanding of this domain across other GPCR. The effects of the ICL1 PROKR2 mutations on activation of signal transduction pathways, ligand binding, and receptor expression were evaluated. Our results indicated that the R85C and R85H PROKR2 mutations interfere only modestly with receptor function, whereas the R80C PROKR2 mutation leads to a marked reduction in receptor activity. Cotransfection of wild-type (WT) and R80C PROKR2 showed that the R80C mutant could exert a dominant negative effect on WT PROKR2 in vitro by interfering with WT receptor expression. In summary, we have shown the importance of Arg80 in ICL1 for PROKR2 expression and demonstrate that R80C PROKR2 exerts a dominant negative effect on WT PROKR2. (Molecular Endocrinology 26: 1417-1427, 2012)
Resumo:
The genetically determined muscular dystrophies are caused by mutations in genes coding for muscle proteins. Differences in the phenotypes are mainly the age of onset and velocity of progression. Muscle weakness is the consequence of myofiber degeneration due to an imbalance between successive cycles of degeneration/regeneration. While muscle fibers are lost, a replacement of the degraded muscle fibers by adipose and connective tissues occurs. Major investigation points are to elicit the involved pathophysiological mechanisms to elucidate how each mutation can lead to a specific degenerative process and how the regeneration is stimulated in each case. To answer these questions, we used four mouse models with different mutations causing muscular dystrophies, Dmd (mdx) , SJL/J, Large (myd) and Lama2 (dy2J) /J, and compared the histological changes of regeneration and fibrosis to the expression of genes involved in those processes. For regeneration, the MyoD, Myf5 and myogenin genes related to the proliferation and differentiation of satellite cells were studied, while for degeneration, the TGF-beta 1 and Pro-collagen 1 alpha 2 genes, involved in the fibrotic cascade, were analyzed. The result suggests that TGF-beta 1 gene is activated in the dystrophic process in all the stages of degeneration, while the activation of the expression of the pro-collagen gene possibly occurs in mildest stages of this process. We also observed that each pathophysiological mechanism acted differently in the activation of regeneration, with distinctions in the induction of proliferation of satellite cells, but with no alterations in stimulation to differentiation. Dysfunction of satellite cells can, therefore, be an important additional mechanism of pathogenesis in the dystrophic muscle.
Resumo:
The advanced glycation end products, namely AGEs, contribute to long-termed complications of diabetes mellitus, including macroangiopathy, where smooth muscle cells (SMC) proliferation stimulated by platelet-derived growth factor (PDGF) isoforms and insulin-like growth factor-I (IGF-I) plays an important role. The objective of the present study was to investigate the effect of an AGE-modified extracellular matrix protein on IGF-I induced SMC proliferation and on the IGF-I-IGF binding protein 4 (IGFBP-4) axis under basal conditions and after stimulation with PDGF-BB. IGF-I resulted in significantly higher thymidine incorporation in SMC seeded on AGE-modified fibronectin (AGE-FN) in comparison to cells seeded on fibronectin (FN). This augmented proliferation could not be accounted for by increased expression of IGF-IR, by decreased secretion of IGFBP-4, a binding protein that inhibits IGF-I mitogenic effects or by increased IGF-IR autophosphorylation. PDGF-BB did not modulate IGF-IR and IGFBP-4 mRNA expression in any of the substrata, however, this growth factor elicited opposite effects on the IGFBP-4 content in the conditioned media, increasing it in cells plated on FN and diminishing it in cells plated on AGE-FN. These findings suggest that one mechanism by which AGE-modified proteins is involved in the pathogenesis of diabetes-associated atherosclerosis might be by increasing SMC susceptibility to IGF-I mitogenic effects.
Resumo:
IgA nephropathy (IgAN), the most common primary glomerulonephritis worldwide, has significant morbidity and mortality as 20-40% of patients progress to end-stage renal disease within 20 years of onset. In order to gain insight into the molecular mechanisms involved in the progression of IgAN, we systematically evaluated renal biopsies from such patients. This showed that the MAPK/ERK signaling pathway was activated in the mesangium of patients presenting with over 1 g/day proteinuria and elevated blood pressure, but absent in biopsy specimens of patients with IgAN and modest proteinuria (<1 g/day). ERK activation was not associated with elevated galactose-deficient IgA1 or IgG specific for galactose-deficient IgA1 in the serum. In human mesangial cells in vitro, ERK activation through mesangial IgA1 receptor (CD71) controlled pro-inflammatory cytokine secretion and was induced by large-molecular-mass IgA1-containing circulating immune complexes purified from patient sera. Moreover, IgA1-dependent ERK activation required renin-angiotensin system as its blockade was efficient in reducing proteinuria in those patients exhibiting substantial mesangial activation of ERK. Thus, ERK activation alters mesangial cell-podocyte crosstalk, leading to renal dysfunction in IgAN. Assessment of MAPK/ERK activation in diagnostic renal biopsies may predict the therapeutic efficacy of renin-angiotensin system blockers in IgAN. Kidney International (2012) 82, 1284-1296; doi:10.1038/ki.2012.192; published online 5 September 2012
Resumo:
A recent addition to the arsenal of tools for glycome analysis is the use of metabolic labels that allow covalent tagging of glycans with imaging probes. In this work we show that N-azidoglucosamine was successfully incorporated into glycolipidic structures of Plasmodium falciparum intraerythrocytic stages. The ability to tag glycoconjugates selectively with a fluorescent reporter group permits TLC detection of the glycolipids providing a new method to quantify dynamic changes in the glycosylation pattern and facilitating direct mass spectrometry analyses. Presence of glycosylphosphatidylinositol and glycosphingolipid structures was determined in the different extracts. Furthermore, the fluorescent tag was used as internal matrix for the MALDI experiment making even easier the analysis. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The structures and functional activities of metalloproteinases from snake venoms have been widely studied because of the importance of these molecules in envenomation. Batroxase, which is a metalloproteinase isolated from Bothrops atrox (Para) snake venom, was obtained by gel filtration and anion exchange chromatography. The enzyme is a single protein chain composed of 202 amino acid residues with a molecular mass of 22.9 kDa, as determined by mass spectrometry analysis, showing an isoelectric point of 7.5. The primary sequence analysis indicates that the proteinase contains a zinc ligand motif (HELGHNLGISH) and a sequence C164I165M166 motif that is associated with a "Met-turn" structure. The protein lacks N-glycosylation sites and contains seven half cystine residues, six of which are conserved as pairs to form disulfide bridges. The three-dimensional structure of Batroxase was modeled based on the crystal structure of BmooMP alpha-I from Bothrops moojeni. The model revealed that the zinc binding site has a high structural similarity to the binding site of other metalloproteinases. Batroxase presented weak hemorrhagic activity, with a MHD of 10 mu g, and was able to hydrolyze extracellular matrix components, such as type IV collagen and fibronectin. The toxin cleaves both a and beta-chains of the fibrinogen molecule, and it can be inhibited by EDTA. EGTA and beta-mercaptoethanol. Batroxase was able to dissolve fibrin clots independently of plasminogen activation. These results demonstrate that Batroxase is a zinc-dependent hemorrhagic metalloproteinase with fibrin(ogen)olytic and thrombolytic activity. Published by Elsevier Ltd.
Resumo:
Glycosylation is an important post-translational modification of snake venom proteins and contributes to venom proteome complexity. Many snake venom components are known to be glycosylated, however, very little is known about the carbohydrate structures present in venom glycoproteins. Previous studies showed that the ontogenetic shift in diet, from ectothermic prey in early life to endothermic prey in adulthood, and shift in animal size are associated with changes in the venom proteome of the snake Bothrops jararaca. In this study we explored the composition of the N-glycome released from newborn and adult B. jararaca venom proteins. We used an ion trap mass spectrometer (IT-MS) to disassemble glycan structures based on the use of several pathways of MS (MSn) and demonstrate the presence of some structural isomers in both newborn and adult venom B. jararaca N-glycans. The main N-glycans identified in both venoms are of the hybrid/complex type however some mannose-rich type structures were also detected. The N-glycan composition of newborn and adult venoms did not vary indicating that differences in the utilization of the N-glycosylation motif could be the explanation for the differences in the glycosylation levels indicated by the differential electrophoretic profiles previously reported for B. jararaca newborn and adult venoms. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Impaired activity of the lysosomal enzyme glucocerebrosidase (GCR) results in the inherited metabolic disorder known as Gaucher disease. Current treatment consists of enzyme replacement therapy by administration of exogenous GCR. Although effective, it is exceptionally expensive, and patients worldwide have a limited access to this medicine. In Brazil, the public healthcare system provides the drug free of charge for all Gaucher's patients, which reaches the order of $ 84million per year. However, the production of GCR by public institutions in Brazil would reduce significantly the therapy costs. Here, we describe a robust protocol for the generation of a cell line producing recombinant human GCR. The protein was expressed in CHO-DXB11 (dhfr(-)) cells after stable transfection and gene amplification with methotrexate. As expected, glycosylated GCR was detected by immunoblotting assay both as cell-associated (similar to 64 and 59 kDa) and secreted (63-69 kDa) form. Analysis of subclones allowed the selection of stable CHO cells producing a secreted functional enzyme, with a calculated productivity of 5.14 pg/cell/day for the highest producer. Although being laborious, traditionalmethods of screening high-producing recombinant cellsmay represent a valuable alternative to generate expensive biopharmaceuticals in countries with limited resources.
Resumo:
Abstract Background HCV is prevalent throughout the world. It is a major cause of chronic liver disease. There is no effective vaccine and the most common therapy, based on Peginterferon, has a success rate of ~50%. The mechanisms underlying viral resistance have not been elucidated but it has been suggested that both host and virus contribute to therapy outcome. Non-structural 5A (NS5A) protein, a critical virus component, is involved in cellular and viral processes. Methods The present study analyzed structural and functional features of 345 sequences of HCV-NS5A genotypes 1 or 3, using in silico tools. Results There was residue type composition and secondary structure differences between the genotypes. In addition, second structural variance were statistical different for each response group in genotype 3. A motif search indicated conserved glycosylation, phosphorylation and myristoylation sites that could be important in structural stabilization and function. Furthermore, a highly conserved integrin ligation site was identified, and could be linked to nuclear forms of NS5A. ProtFun indicated NS5A to have diverse enzymatic and nonenzymatic activities, participating in a great range of cell functions, with statistical difference between genotypes. Conclusion This study presents new insights into the HCV-NS5A. It is the first study that using bioinformatics tools, suggests differences between genotypes and response to therapy that can be related to NS5A protein features. Therefore, it emphasizes the importance of using bioinformatics tools in viral studies. Data acquired herein will aid in clarifying the structure/function of this protein and in the development of antiviral agents.