4 resultados para Voluntary autobiographical memories

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: Neuroimaging studies have highlighted important issues related to structural and functional brain changes found in sufferers of psychological trauma that may influence their ability to synthesize, categorize, and integrate traumatic memories. Methods: Literature review and critical analysis and synthesis. Results: Traumatic memories are diagnostic symptoms of post-traumatic stress disorder (PTSD), and the dual representation theory posits separate memory systems subserving vivid re-experiencing (non-hippocampally dependent) versus declarative autobiographical memories of trauma (hippocampally dependent). But the psychopathological signs of trauma are not static over time, nor is the expression of traumatic memories. Multiple memory systems are activated simultaneously and in parallel on various occasions. Neural circuitry interaction is a crucial aspect in the development of a psychotherapeutic approach that may favour an integrative translation of the sensory fragments of the traumatic memory into a declarative memory system. Conclusion: The relationship between neuroimaging findings and psychological approaches is discussed for greater efficacy in the treatment of psychologically traumatized patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

de Lima-Pardini AC, Papegaaij S, Cohen RG, Teixeira LA, Smith BA, Horak FB. The interaction of postural and voluntary strategies for stability in Parkinson's disease. J Neurophysiol 108: 1244-1252, 2012. First published June 6, 2012; doi:10.1152/jn.00118.2012.-This study assessed the effects of stability constraints of a voluntary task on postural responses to an external perturbation in subjects with Parkinson's disease (PD) and healthy elderly participants. Eleven PD subjects and twelve control subjects were perturbed with backward surface translations while standing and performing two versions of a voluntary task: holding a tray with a cylinder placed with the flat side down [low constraint (LC)] or with the rolling, round side down [high constraint (HC)]. Participants performed alternating blocks of LC and HC trials. PD participants accomplished the voluntary task as well as control subjects, showing slower tray velocity in the HC condition compared with the LC condition. However, the latency of postural responses was longer in the HC condition only for control subjects. Control subjects presented different patterns of hip-shoulder coordination as a function of task constraint, whereas PD subjects had a relatively invariant pattern. Initiating the experiment with the HC task led to 1) decreased postural stability in PD subjects only and 2) reduced peak hip flexion in control subjects only. These results suggest that PD impairs the capacity to adapt postural responses to constraints imposed by a voluntary task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigated whether postural responses are influenced by the stability constraint of a voluntary, manual task. We also examined how task constraint and first experience (the condition with which the participants started the experiment) influence the kinematic strategies used to simultaneously accomplish a postural response and a voluntary task. Twelve healthy, older adults were perturbed during standing, while holding a tray with a cylinder placed with the flat side down (low constraint, LC) or with the rolling, round side down (high constraint, HC). Central set changed according to the task constraint, as shown by a higher magnitude of both the gastrocnemius and tibialis anterior muscle activation bursts in the HC than in the LC condition. This increase in muscle activation was not reflected, however, in changes in the center of pressure or center of mass displacement. Task constraint influenced the peak shoulder flexion for the voluntary tray task but not the peak hip flexion for the postural task. In contrast, first experience influenced the peak hip flexion but not the peak shoulder flexion. These results suggest an interaction between two separate control mechanisms for automatic postural responses and voluntary stabilization tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background The beneficial actions of exercise training on lipid, glucose and energy metabolism and insulin sensitivity appear to be in part mediated by PGC-1α. Previous studies have shown that spontaneously exercised rats show at rest enhanced responsiveness to exogenous insulin, lower plasma insulin levels and increased skeletal muscle insulin sensitivity. This study was initiated to examine the functional interaction between exercise-induced modulation of skeletal muscle and liver PGC-1α protein expression, whole body insulin sensitivity, and circulating FFA levels as a measure of whole body fatty acid (lipid) metabolism. Methods Two groups of male Wistar rats (2 Mo of age, 188.82 ± 2.77 g BW) were used in this study. One group consisted of control rats placed in standard laboratory cages. Exercising rats were housed individually in cages equipped with running wheels and allowed to run at their own pace for 5 weeks. At the end of exercise training, insulin sensitivity was evaluated by comparing steady-state plasma glucose (SSPG) concentrations at constant plasma insulin levels attained during the continuous infusion of glucose and insulin to each experimental group. Subsequently, soleus and plantaris muscle and liver samples were collected and quantified for PGC-1α protein expression by Western blotting. Collected blood samples were analyzed for glucose, insulin and FFA concentrations. Results Rats housed in the exercise wheel cages demonstrated almost linear increases in running activity with advancing time reaching to maximum value around 4 weeks. On an average, the rats ran a mean (Mean ± SE) of 4.102 ± 0.747 km/day and consumed significantly more food as compared to sedentary controls (P < 0.001) in order to meet their increased caloric requirement. Mean plasma insulin (P < 0.001) and FFA (P < 0.006) concentrations were lower in the exercise-trained rats as compared to sedentary controls. Mean steady state plasma insulin (SSPI) and glucose (SSPG) concentrations were not significantly different in sedentary control rats as compared to exercise-trained animals. Plantaris PGC-1α protein expression increased significantly from a 1.11 ± 0.12 in the sedentary rats to 1.74 ± 0.09 in exercising rats (P < 0.001). However, exercise had no effect on PGC-1α protein content in either soleus muscle or liver tissue. These results indicate that exercise training selectively up regulates the PGC-1α protein expression in high-oxidative fast skeletal muscle type such as plantaris muscle. Conclusion These data suggest that PGC-1α most likely plays a restricted role in exercise-mediated improvements in insulin resistance (sensitivity) and lowering of circulating FFA levels.