3 resultados para Visual interpretation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The Restinga of Marambaia is an emerged sand bar located between the Sepetiba Bay and the South Atlantic Ocean, on the south-east coast of Brazil. The objective of this study was to observe the geomorphologic evolution of the coastal zone of the Restinga of Marambaia using multitemporal satellite images acquired by multisensors from 1975 to 2004. The images were digitally segmented by a region growth algorithm and submitted to an unsupervised classification procedure (ISOSEG) followed by a raster edit based on visual interpretation. The image time-series showed a general trend of decrease in the total sand bar area with values varying from 80.61km(2) in 1975 to 78.15km(2) in 2004. The total area calculation based on the 1975 and 1978 Landsat MSS data was shown to be super-estimated in relation to the Landsat TM, Landsat ETM+, and CBERS-2 CCD data. These differences can also be associated to the relatively poorer spatial resolution of the MSS data, nominally 79m, against the 20m of the CCD data and 30m of the TM and ETM+ data. For the estimates of the width in the central portion of the sand bar the variation was from 158m (1975) to 100m (2004). The formation of a spit in the northern region of the study area was visually observed. The area of the spit was estimated, with values varying from 0.82km(2) (1975) to 0.55km(2) (2004).
Resumo:
This paper presents a comparison of descriptive statistics obtained for brittle structural lineaments extracted manually from LANDSAT images and shaded relief images from SRTM 3 DEM at 1:100, 000 and 1:500, 000 scales. The selected area is located in the southern of Brazil and comprises Precambrian rocks and stratigraphic units of the Paraná Basin. The application of this methodology shows that the visual interpretation depends on the kind of remote sensing image. The resulting descriptive statistics obtained for lineaments extracted from the images do not follow the same pattern according to the scale adopted. The main direction obtained for Proterozoic rocks using both image types at a 1:500, 000 scale are close to NS±10, whereas at a 1:100, 000 scale N45E was obtained for shaded relief images from SRTM 3 DEM and N10W for LANDSAT images. The Paleozoic sediments yielded the best results for the different images and scales (N50W). On the other hand, the Mesozoic igneous rocks showed greatest differences, the shaded relief images from SRTM 3 DEM images highlighting NE structures and the LANDSAT images highlighting NW structures. The accumulated frequency demonstrated high similarity between products for each image type no matter the scale, indicating that they can be used in multiscale studies. Conversely, major differences were found when comparing data obtained using shaded relief images from SRTM 3 DEM and Landsat images at a 1:100, 000 scale.
Resumo:
Visual analysis of social networks is usually based on graph drawing algorithms and tools. However, social networks are a special kind of graph in the sense that interpretation of displayed relationships is heavily dependent on context. Context, in its turn, is given by attributes associated with graph elements, such as individual nodes, edges, and groups of edges, as well as by the nature of the connections between individuals. In most systems, attributes of individuals and communities are not taken into consideration during graph layout, except to derive weights for force-based placement strategies. This paper proposes a set of novel tools for displaying and exploring social networks based on attribute and connectivity mappings. These properties are employed to layout nodes on the plane via multidimensional projection techniques. For the attribute mapping, we show that node proximity in the layout corresponds to similarity in attribute, leading to easiness in locating similar groups of nodes. The projection based on connectivity yields an initial placement that forgoes force-based or graph analysis algorithm, reaching a meaningful layout in one pass. When a force algorithm is then applied to this initial mapping, the final layout presents better properties than conventional force-based approaches. Numerical evaluations show a number of advantages of pre-mapping points via projections. User evaluation demonstrates that these tools promote ease of manipulation as well as fast identification of concepts and associations which cannot be easily expressed by conventional graph visualization alone. In order to allow better space usage for complex networks, a graph mapping on the surface of a sphere is also implemented.