3 resultados para Viral diversity
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Hepatitis C virus (HCV) is the leading cause of liver disease worldwide. In this study, we analyzed four treatment-naive patients infected with subtype 1a and performed Roche/454 pyrosequencing across the coding region. We report the presence of low-level drug resistance mutations that would most likely have been missed using conventional sequencing methods. The approach described here is broadly applicable to studies of viral diversity and could help to improve the efficacy of direct-acting antiviral agents (DAA) in the treatment of HCV-infected patients.
Resumo:
The continued global spread and evolution of HIV diversity pose significant challenges to diagnostics and vaccine strategies. NIAID partnered with the FDA, WRAIR, academia, and industry to form a Viral Panel Working Group to design and prepare a panel of well-characterized current and diverse HIV isolates. Plasma samples that had screened positive for HIV infection and had evidence of recently acquired infection were donated by blood centers in North and South America, Europe, and Africa. A total of 80 plasma samples were tested by quantitative nucleic acid tests, p24 antigen, EIA, and Western blot to assign a Fiebig stage indicative of approximate time from initial infection. Evaluation of viral load using FDA-cleared assays showed excellent concordance when subtype B virus was tested, but lower correlations for subtype C. Plasma samples were cocultivated with phytohemagglutinin (PHA)-stimulated peripheral blood mononuclear cells (PBMCs) from normal donors to generate 30 viral isolates (50-80% success rate for samples with viral load >10,000 copies/ml), which were then expanded to 10(7)-10(9) virus copies per ml. Analysis of env sequences showed that sequences derived from cultured PBMCs were not distinguishable from those obtained from the original plasma. The pilot collection includes 30 isolates representing subtypes B, C, B/F, CRF04_cpx, and CRF02_AG. These studies will serve as a basis for the development of a comprehensive panel of highly characterized viral isolates that reflects the current dynamic and complex HIV epidemic, and will be made available through the External Quality Assurance Program Oversight Laboratory (EQAPOL).
Resumo:
Abstract Background Dengue is the most important arbovirus disease in tropical and subtropical countries. The viral envelope (E) protein is responsible for cell receptor binding and is the main target of neutralizing antibodies. The aim of this study was to analyze the diversity of the E protein gene of DENV-3. E protein gene sequences of 20 new viruses isolated in Ribeirao Preto, Brazil, and 427 sequences retrieved from GenBank were aligned for diversity and phylogenetic analysis. Results Comparison of the E protein gene sequences revealed the presence of 47 variable sites distributed in the protein; most of those amino acids changes are located on the viral surface. The phylogenetic analysis showed the distribution of DENV-3 in four genotypes. Genotypes I, II and III revealed internal groups that we have called lineages and sub-lineages. All amino acids that characterize a group (genotype, lineage, or sub-lineage) are located in the 47 variable sites of the E protein. Conclusion Our results provide information about the most frequent amino acid changes and diversity of the E protein of DENV-3.