2 resultados para Vibrational contribution

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electronic states of a new molecular species, SiAs, correlating with the three lowest dissociation channels are characterized at a high-level of theory using the CASSCF/MRCI approach along with quintuple-xi quality basis sets. This characterization includes potential energy curves, vibrational energy levels, spectroscopic parameters, dipole and transition dipole moment functions, transition probabilities, and radiative lifetimes. For the ground state (X-2 Pi), an assessment of spin-orbit effects and the interaction with the close-lying A(2)Sigma(+) state is also reported. Similarities and differences with other isovalent species such as SiP and CAs are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All doublet and quartet electronic states correlating with the first dissociation channel of SeCl and some Rydberg states are investigated theoretically at the CASSCF/MRCI level of theory using extended basis sets, including the contribution of spin-orbit effects. The similarity of the potential energy curves with those of SeF suggests that spectroscopic constants for the ground (X (2)Pi) and the first excited quartet (a(4)Sigma) of SeCl could also be determined via an emission resulting from the reaction of selenium with atomic chlorine. The coupling constant of the ground state at R-e is estimated as -1610 cm (1). The potential energy curves calculated and the derived spectroscopic constants do not support the interpretation and assignment of the scarce transitions recorded experimentally as due to (2)Pi-(2)Pi emissions. That the few observed lines might arise from transitions from the state b(4)Sigma(-)(1/2) to a very high vibrational level of the state a(4)Sigma(-)(1/2) is an open possibility, however, the number of vibrational states and the calculated Delta G(1/2) differ significantly from the reported ones. (C) 2012 Elsevier B. V. All rights reserved.