3 resultados para Vetores virais
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Abstract Background Hepatitis C chronic liver disease is a major cause of liver transplant in developed countries. This article reports the first nationwide population-based survey conducted to estimate the seroprevalence of HCV antibodies and associated risk factors in the urban population of Brazil. Methods The cross sectional study was conducted in all Brazilian macro-regions from 2005 to 2009, as a stratified multistage cluster sample of 19,503 inhabitants aged between 10 and 69 years, representing individuals living in all 26 State capitals and the Federal District. Hepatitis C antibodies were detected by a third-generation enzyme immunoassay. Seropositive individuals were retested by Polymerase Chain Reaction and genotyped. Adjusted prevalence was estimated by macro-regions. Potential risk factors associated with HCV infection were assessed by calculating the crude and adjusted odds ratios, 95% confidence intervals (95% CI) and p values. Population attributable risk was estimated for multiple factors using a case–control approach. Results The overall weighted prevalence of hepatitis C antibodies was 1.38% (95% CI: 1.12%–1.64%). Prevalence of infection increased in older groups but was similar for both sexes. The multivariate model showed the following to be predictors of HCV infection: age, injected drug use (OR = 6.65), sniffed drug use (OR = 2.59), hospitalization (OR = 1.90), groups socially deprived by the lack of sewage disposal (OR = 2.53), and injection with glass syringe (OR = 1.52, with a borderline p value). The genotypes 1 (subtypes 1a, 1b), 2b and 3a were identified. The estimated population attributable risk for the ensemble of risk factors was 40%. Approximately 1.3 million individuals would be expected to be anti-HCV-positive in the country. Conclusions The large estimated absolute numbers of infected individuals reveals the burden of the disease in the near future, giving rise to costs for the health care system and society at large. The known risk factors explain less than 50% of the infected cases, limiting the prevention strategies. Our findings regarding risk behaviors associated with HCV infection showed that there is still room for improving strategies for reducing transmission among drug users and nosocomial infection, as well as a need for specific prevention and control strategies targeting individuals living in poverty.
Resumo:
INTRODUCTION: An epidemiological study was undertaken to identify determinant factors in the occurrence of American cutaneous leishmaniasis in areas under the influence of hydroelectric plants in Paranapanema river, State of Paraná, Brazil. The ecological aspects of the phlebotomine fauna were investigated. METHODS: Sandflies were sampled with automatic light traps from February 2004 to June 2006 at 25 sites in the urban and rural areas of Itambaracá, and in Porto Almeida and São Joaquim do Pontal. RESULTS: A total of 3,187 sandflies of 15 species were captured. Nyssomyia neivai predominated (34.4%), followed by Pintomyia pessoai (32.6%), Migonemyia migonei (11.6%), Nyssomyia whitmani (8.8%), and Pintomyia fischeri (2.7%), all implicated in the transmission of Leishmania. Males predominated for Ny. neivai, and females for the other vector species, with significant statistical differences (p < 0.001). Nyssomyia neivai, Pi. pessoai, Ny. whitmani, Brumptomyia brumpti, Mg. migonei, and Pi. fischeri presented the highest values for the Standardized Species Abundance Index (SSAI). The highest frequencies and diversities were found in the preserved forest in Porto Almeida, followed by forests with degradation in São Joaquim do Pontal and Vila Rural. CONCLUSIONS: Sandflies were captured in all localities, with the five vectors predominating. Ny. neivai had its highest frequencies in nearby peridomestic environments and Pi. pessoai in areas of preserved forests. The highest SSAI values of Ny. neivai and Pi. pessoai reflect their wider dispersion and higher frequencies compared with other species, which seems to indicate that these two species may be transmitting leishmaniasis in the area.
Resumo:
Dengue is the most prevalent arboviral infection, affecting millions of people every year. Attempts to control such infection are being made, and the development of a vaccine is a World Health Organization priority. Among the proteins being tested as vaccine candidates in preclinical settings is the non-structural protein 1 (NS1). In the present study, we tested the immune responses generated by targeting the NS1 protein to two different dendritic cell populations. Dendritic cells (DCs) are important antigen presenting cells, and targeting proteins to maturing DCs has proved to be an efficient means of immunization. Antigen targeting is accomplished by the use of a monoclonal antibody (mAb) directed against a DC cell surface receptor fused to the protein of interest. We used two mAbs (αDEC205 and αDCIR2) to target two distinct DC populations, expressing either DEC205 or DCIR2 endocytic receptors, respectively, in mice. The fusion mAbs were successfully produced, bound to their respective receptors, and were used to immunize BALB/c mice in the presence of polyriboinosinic: polyribocytidylic acid (poly (I:C)), as a DC maturation stimulus. We observed induction of strong anti-NS1 antibody responses and similar antigen binding affinity irrespectively of the DC population targeted. Nevertheless, the IgG1/IgG2a ratios were different between mouse groups immunized with αDEC-NS1 and αDCIR2-NS1 mAbs. When we tested the induction of cellular immune responses, the number of IFN-γ producing cells was higher in αDEC-NS1 immunized animals. In addition, mice immunized with the αDEC-NS1 mAb were significantly protected from a lethal intracranial challenge with the DENV2 NGC strain when compared to mice immunized with αDCIR2-NS1 mAb. Protection was partially mediated by CD4(+) and CD8(+) T cells as depletion of these populations reduced both survival and morbidity signs. We conclude that targeting the NS1 protein to the DEC205(+) DC population with poly (I:C) opens perspectives for dengue vaccine development.