39 resultados para Venom

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scorpion toxins targeting voltage-gated sodium (NaV) channels are peptides that comprise 6076 amino acid residues cross-linked by four disulfide bridges. These toxins can be divided in two groups (a and beta toxins), according to their binding properties and mode of action. The scorpion a-toxin Ts2, previously described as a beta-toxin, was purified from the venom of Tityus serrulatus, the most dangerous Brazilian scorpion. In this study, seven mammalian NaV channel isoforms (rNaV1.2, rNaV1.3, rNaV1.4, hNaV1.5, mNaV1.6, rNaV1.7 and rNaV1.8) and one insect NaV channel isoform (DmNaV1) were used to investigate the subtype specificity and selectivity of Ts2. The electrophysiology assays showed that Ts2 inhibits rapid inactivation of NaV1.2, NaV1.3, NaV1.5, NaV1.6 and NaV1.7, but does not affect NaV1.4, NaV1.8 or DmNaV1. Interestingly, Ts2 significantly shifts the voltage dependence of activation of NaV1.3 channels. The 3D structure of this toxin was modeled based on the high sequence identity (72%) shared with Ts1, another T. serrulatus toxin. The overall fold of the Ts2 model consists of three beta-strands and one a-helix, and is arranged in a triangular shape forming a cysteine-stabilized a-helix/beta-sheet (CSa beta) motif.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Snake Venom Metalloproteinases (SVMPs) are the most abundant components present in Viperidae venom. They are important in the induction of systemic alterations and local tissue damage after envenomation. In the present study, a metalloproteinase named BpMPI was isolated from Bothropoides pauloensis snake venom and its biochemical and enzymatic characteristics were determined. BpMPI was purified in two chromatography steps on ion exchange CM-Sepharose Fast flow and Sephacryl S-300. This protease was homogeneous on SOS-PAGE and showed a single chain polypeptide of 20 kDa under non reducing conditions. The partial amino acid sequence of the enzyme showed high similarity with other SVMPs enzymes from snake venoms. BpMPI showed proteolytic activity upon azocasein and bovine fibrinogen and was inhibited by EDTA, 1,10 phenanthroline and beta-mercaptoethanol. Moreover, this enzyme showed stability at neutral and alkaline pH and it was inactivated at high temperatures. BpMPI was able to hydrolyze glandular and tissue kallikrein substrates, but was unable to act upon factor Xa and plasmin substrates. The enzyme did not induce local hemorrhage in the dorsal region of mice even at high doses. Taken together, our data showed that BpMP-I is in fact a fibrinogenolytic metalloproteinase and a non hemorrhagic enzyme. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was the isolation of the LAAO from Lachesis muta venom (LmLAAO) and its biochemical, functional and structural characterization. Two different purification protocols were developed and both provided highly homogeneous and active LmLAAO. It is a homodimeric enzyme with molar mass around 120 kDa under non-reducing conditions, 60 kDa under reducing conditions in SDS-PAGE and 60852 Da by mass spectrometry. Forty amino acid residues were directly sequenced from LmLAAO and its complete cDNA was identified and characterized from an Expressed Sequence Tags data bank obtained from a venom gland. A model based on sequence homology was manually built in order to predict its three-dimensional structure. LmLAAO showed a catalytic preference for hydrophobic amino acids (K-m of 0.97 mmol/L with Leu). A mild myonecrosis was observed histologically in mice after injection of 100 mu g of LmLAAO and confirmed by a 15-fold increase in CK activity. LmLAAO induced cytotoxicity on AGS cell line (gastric adenocarcinoma, IC50: 22.7 mu g/mL) and on MCF-7 cell line (breast adenocarcinoma, IC50:1.41 mu g/mL). It presents antiparasitic activity on Leishmania brasiliensis (IC50: 2.22 mu g/nnL), but Trypanosoma cruzi was resistant to LmLAAO. In conclusion, LmLAAO showed low systemic toxicity but important in vitro pharmacological actions. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fibrinogenolytic metalloproteinase from Bothrops moojeni venom, named moojenin, was purified by a combination of ion-exchange chromatography on DEAE-Sephacel and gel filtration on Sephacryl S-300. SDS-PAGE analysis indicated that moojenin consists of a single polypeptide chain and has a molecular mass about 45 kDa. Sequencing of moojenin by Edman degradation revealed the amino acid sequence LGPDIVSPPVCGNELLEV-GEECDCGTPENCQNE, which showed strong identity with many other snake venom metalloproteinases (SVMPs). The enzyme cleaves the A alpha-chain of fibrinogen first, followed by the E beta-chain, and shows no effects on the gamma-chain. Moojenin showed a coagulant activity on bovine plasma about 3.1 fold lower than crude venom. The fibrinogenolytic and coagulant activities of the moojenin were abolished by preincubation with EDTA, 1,10-phenanthroline and beta-mercaptoethanol. Moojenin showed maximum activity at temperatures ranging from 30 to 40 degrees C and its optimal pH was 4.0. Its activity was completely lost at temperatures above 50 degrees C. Moojenin induced necrosis in liver and muscle, evidenced by morphological alterations, but did not cause histological alterations in mouse lungs, kidney or heart. Moojenin rendered the blood uncoagulatable when it was intraperitoneally administered into mice. This metalloproteinase may be of medical interest because of its anticoagulant activity. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This communication describes the general biochemical properties and some immunological characteristics of the venom from the Peruvian scorpion Hadruroides lunatus, which is the most medically relevant species in Peru. The soluble venom of this scorpion is toxic to mice, the LD50 determined was 0.1 mg/kg and 21.55 mg/kg when the venom was injected intracranial or intraperitoneally, respectively. The soluble venom displayed proteolytic, hyaluronidasic, phospholipasic and cardiotoxic activities. High performance liquid chromatography of the soluble venom resulted in the separation of 20 fractions. Two peptides with phospholipasic activity were isolated to homogeneity and their molecular masses determined by mass spectrometry (MALDI TOF). Anti-H. lunatus venom sera were produced in rabbits. Western blotting analysis showed that most of the protein content of this venom is immunogenic. H. lunatus anti-venom displayed consistent cross-reactivity with venom antigens from the new World-scorpions Tityus serrulatus and Centruroides sculpturatus venoms; however, a weaker reactivity was observed against the venom antigens from the old World-scorpion Androctonus australis Hector. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hybrid created from the crossbreeding of European and African bees, known as the Africanised bee, has provided numerous advantages for current beekeeping. However, this new species exhibits undesirable behaviours, such as colony defence instinct and a propensity to attack en masse, which can result in serious accidents. To date, there is no effective treatment for cases of Africanised bee envenomation. One promising technique for developing an efficient antivenom is the use of phage display technology, which enables the production of human antibodies, thus avoiding the complications of serum therapy, such as anaphylaxis and serum sickness. The aim of this study was to produce human monoclonal single-chain Fv (scFv) antibody fragments capable of inhibiting the toxic effects of Africanised bee venom. We conducted four rounds of selection of antibodies against the venom and three rounds of selection of antibodies against purified melittin. Three clones were selected and tested by enzyme-linked immunosorbent assay to verify their specificity for melittin and phospholipase A2. Two clones (C5 and C12) were specific for melittin, and one (A7) was specific for phospholipase A2. In a kinetic haemolytic assay, these clones were evaluated individually and in pairs. The A7-C12 combination had the best synergistic effect and was chosen to be used in the assays of myotoxicity inhibition and lethality. The A7-C12 combination inhibited the in vivo myotoxic effect of the venom and increased the survival of treated animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bothrops atrox is responsible for most accidents involving snakes in the Brazilian Amazon and its venom induces serious systemic and local effects. The local effects are not neutralized effectively by commercial antivenoms, resulting in serious sequelae in individuals bitten by this species. This study investigates the local inflammatory events induced in mice by B. atrox venom (Bay), such as vascular permeability, leukocyte influx and the release of important inflammatory mediators such as cytokines, eicosanoids and the chemokine CCL-2, at the injection site. The effect of Bay on cyclooxygenase (COX-1 and COX-2) expression was also investigated. The results showed that intraperitoneal (i.p.) injection of BaV promoted a rapid and significant increase in vascular permeability, which reached a peak 1 h after venom administration. Furthermore, BaV caused leukocyte infiltration into the peritoneal cavity between 1 and 8 h after i.p. injection, with mononuclear leukocytes (MNs) predominating in the first 4 h, and polymorphonuclear leukocytes (PMNs) in the last 4 h. Increased protein expression of COX-2, but not of COX-1, was detected in leukocytes recruited in the first and fourth hours after injection of BaV. The venom caused the release of eicosanoids PGD(2), PGE(2), TXA(2) and LTB4, cytokines TNF-alpha, IL-6, IL-10 and IL-12p70, but not IFN-gamma, and chemokine CCL-2 at different times. The results show that Bay is able to induce an early increase in vascular permeability and a leukocyte influx to the injection site consisting mainly of MNs initially and PMNs during the later stages. These phenomena are associated with the production of cytokines, the chemokine CCL-2 and eicosanoids derived from COX-1 and COX-2. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unraveling the repertoire of venom toxins of Bothropoides pauloensis was assessed by snake venomics and venom gland transcriptomic surveys. Both approaches yielded converging overall figures, pointing to metalloproteinases (similar to 37%), PLA(2)s (26-32%), and vasoactive (bradykinin-potentiating) peptides (12-17%) as the major toxin classes. The high occurrence of SVMPs, PLA(2) molecules, vasoactive peptides, along with serine proteinases, explains the local and systemic effects observed in envenomations by B. pauloensis. Minor (<3%) C-type lectin, serine proteinase, L-amino acid oxidase, nerve growth factor, and CRISP molecules were also identified in the transcriptome and the proteome. Low abundance (0.3%) EST singletons coding for vascular endothelial growth factor (svVEGF), ohanin, hyaluronidase, and 5' nucleotidase were found only in the venom gland cDNA library. At the molecular level, the transcriptomic and proteomic datasets display low compositional concordance. In particular, although there is good agreement between transcriptome and proteome in the identity of BPPs, PLA(2) molecules and L-amino acid oxidase, both datasets strongly depart in their C-type lectin and SVMP complements. These data support the view that venom composition is influenced by transcriptional and translational mechanisms and emphasize the value of combining proteomic and transcriptomic approaches to acquire a more complete understanding of the toxinological profile and natural history of the snake venom. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures and functional activities of metalloproteinases from snake venoms have been widely studied because of the importance of these molecules in envenomation. Batroxase, which is a metalloproteinase isolated from Bothrops atrox (Para) snake venom, was obtained by gel filtration and anion exchange chromatography. The enzyme is a single protein chain composed of 202 amino acid residues with a molecular mass of 22.9 kDa, as determined by mass spectrometry analysis, showing an isoelectric point of 7.5. The primary sequence analysis indicates that the proteinase contains a zinc ligand motif (HELGHNLGISH) and a sequence C164I165M166 motif that is associated with a "Met-turn" structure. The protein lacks N-glycosylation sites and contains seven half cystine residues, six of which are conserved as pairs to form disulfide bridges. The three-dimensional structure of Batroxase was modeled based on the crystal structure of BmooMP alpha-I from Bothrops moojeni. The model revealed that the zinc binding site has a high structural similarity to the binding site of other metalloproteinases. Batroxase presented weak hemorrhagic activity, with a MHD of 10 mu g, and was able to hydrolyze extracellular matrix components, such as type IV collagen and fibronectin. The toxin cleaves both a and beta-chains of the fibrinogen molecule, and it can be inhibited by EDTA. EGTA and beta-mercaptoethanol. Batroxase was able to dissolve fibrin clots independently of plasminogen activation. These results demonstrate that Batroxase is a zinc-dependent hemorrhagic metalloproteinase with fibrin(ogen)olytic and thrombolytic activity. Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Sapindus saponaria L. (Sapindaceae) bark, root, and fruits are used as sedatives and to treat gastric ulcer and also demonstrate diuretic and expectorant effects. Objective: The anti-snake venom properties of callus of S. saponaria are investigated here for the first time. Materials and methods: In vitro cultivated callus of Sapindus saponaria were lyophilized, and the extracts were prepared with different solvents, before submitting to phytochemical studies and evaluation of the anti-ophidian activity. Crude extracts were fractionated by liquid-liquid partition and the fractions were monitored by thin layer chromatography (TLC). Subsequently, anti-ophidian activities were analyzed toward Bothrops jararacussu Lacerda (Viperidae), B. moojeni Hoge (Viperidae), B. alternates Dumeril (Viperidea) and Crotalus durissus terrificus Lineu (Viperidae) venoms and isolated myotoxins and phospholipase A(2) (PLA(2)). Results: Fractions A1, A2 and the extract in MeOH:H2O (9:1) significantly inhibited the toxic and pharmacological activities induced by snake venoms and toxins, when compared to other extracts and fractions. The lethal, clotting, phospholipase, edema-inducing, hemorrhagic and myotoxic activities were partially inhibited by the different extracts and fractions. TLC profiles of the crude extracts (B and C) and fractions (A1 and A2) showed beta-sitosterol and stigmasterol as their main compounds. Stigmasterol exhibited inhibitory effects on enzymatic and myotoxic activities of PLA(2). Discussion and conclusion: Sapindus saponaria extracts and fractions presented anti-ophidian activity and could be used as an adjuvant to serum therapy or for its supplementation, and in addition, as a rich source of potential inhibitors of enzymes involved in several pathophysiological human and animal diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Brazil, the species Tityus serrulatus is responsible for the most severe cases of scorpion envenomation. There is currently a need for new scorpion anti-venoms that are more effective and less harmful. This study attempted to produce human monoclonal antibodies capable of inhibiting the activity of T. serrulatus venom (TsV), using the Griffin.1 library of human single-chain fragment-variable (scFv) phage antibodies. Four rounds of phage antibody selection were performed, and the round with the highest phage antibody titer was chosen for the production of monoclonal phage antibodies and for further analysis. The scFv 2A, designated serrumab, was selected for the production and purification of soluble antibody fragments. In a murine peritoneal macrophage cell line (J774.1), in vitro assays of the cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-alpha, and IL-10 were performed. In male BALB/c mice, in vivo assays of plasma urea, creatinine, aspartate transaminase, and glucose were performed, as well as of neutrophil recruitment and leukocyte counts. It was found that serrumab inhibited the TsV-induced increases in the production of IL-6, TNF alpha, and IL-10 in J774.1 cells. The in vivo inhibition assay showed that serrumab also prevented TsV-induced increases in the plasma levels of urea, creatinine, aspartate transaminase, and glucose, as well as preventing the TsV-induced increase in neutrophil recruitment. The results indicate that the human monoclonal antibody serrumab is a candidate for inclusion in a mixture of specific antibodies to the various toxins present in TsV. Therefore, serrumab shows promise for use in the production of new anti-venom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that BJcuL, a lectin purified from Bothrops jararacussu venom, exerts cytotoxic effects to gastric carcinoma cells MKN45 and AGS. This effect was due to the direct interaction with specific glycans on the cells surface and was observed by cell viability decrease, disorganization of actin filaments and apoptosis. In addition, BJcuL was able to reduce tumor cell adhesion to matrigel, what was inhibited by specific carbohydrate or partially inhibited when cells were pre-incubated with matrigel. Our results suggest that BJcuL was able to promote apoptosis in both tumor cells lines and therefore has a prospect for potential use in cancer therapy. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports the isolation and biochemical characterization of two different serine proteases from Bothrops pirajai snake venom, thus providing a comparative analysis of the enzymes. The isolation process consisted of three consecutive chromatographic steps (Sephacryl S-200, Benzamidine Sepharose and C2/C18), resulting in two serine proteases, named BpirSP27 and BpirSP41 after their molecular masses by mass spectrometry (27,121 and 40,639 Da, respectively). Estimation by SDS-PAGE under denaturing conditions showed that, when deglycosylated with PNGase F, BpirSP27 and BpirSP41 had their molecular masses reduced by approximately 15 and 42%, respectively. Both are acidic enzymes, with pI of approximately 4.7 for BpirSP27 and 3.7 for BpirSP41, and their N-terminal amino acid sequences showed 57% identity to each other, with high similarity to the sequences of other snake venom serine proteases (SVSPs). The enzymes showed different actions on bovine fibrinogen, with BpirSP27 acting preferentially on the B beta chain and BpirSP41 on both A alpha and B beta chains. The two serine proteases were also able to degrade fibrin and blood clots in vitro depending on the doses and incubation periods, with higher results for BpirSP41. Both enzymes coagulated the human plasma in a dose-dependent manner, and BpirSP41 showed a higher coagulant potential, with minimum coagulant dose (MCD) of similar to 3.5 mu g versus 20 mu g for BpirSP27. The enzymes were capable of hydrolyzing different chromogenic substrates, including S-2238 for thrombin-like enzymes, but only BpirSP27 acted on the substrate S-2251 for plasmin. They also showed high stability against variations of temperature and pH, but their activities were significantly reduced after preincubation with Cu2+ ion and specific serine protease inhibitors. In addition. BpirSP27 induced aggregation of washed platelets to a greater extent than BpirSP41. The results showed significant structural and functional differences between B. pirajai serine proteases, providing interesting insights into the structure-function relationship of SVSPs. (C) 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bee venom (BV) allergy is potentially dangerous for allergic individuals because a single bee sting may induce an anaphylactic reaction, eventually leading to death. Currently, venom immunotherapy (VIT) is the only treatment with long-lasting effect for this kind of allergy and its efficiency has been recognized worldwide. This therapy consists of subcutaneous injections of gradually increasing doses of the allergen. This causes patient lack of compliance due to a long time of treatment with a total of 30-80 injections administered over years. In this article we deal with the characterization of different MS-PLGA formulations containing BV proteins for VIT. The PLGA microspheres containing BV represent a strategy to replace the multiple injections, because they can control the solute release. Physical and biochemical methods were used to analyze and characterize their preparation. Microspheres with encapsulation efficiencies of 49-75% were obtained with a BV triphasic release profile. Among them, the MS-PLGA 34 kDa-COOH showed to be best for VIT because they presented a low initial burst (20%) and a slow BV release during lag phase. Furthermore, few conformational changes were observed in the released BV. Above all, the BV remained immunologically recognizable, which means that they could continuously stimulate the immune system. Those microspheres containing BV could replace sequential injections of traditional VIT with the remarkable advantage of reduced number of injections. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hyaluronidase (CdtHya1) from Crotalus durissus terrificus snake venom (CdtV) was isolated and showed to exhibit a high activity on hyaluronan cleavage. However, surveys on this enzyme are still limited. This study aimed at its isolation, functional/structural characterization and the evaluation of its effect on the spreading of crotoxin and phospholipase A(2) (PLA(2)). The enzyme was purified through cation exchange, gel filtration and hydrophobic chromatography. After that, it was submitted to a reverse-phase fast protein liquid chromatography (RP-FPLC) and Edman degradation sequencing, which showed the first N-terminal 44 amino acid residues whose sequence evidenced identity with other snake venom hyaluronidases. CdtHya1 is a monomeric glycoprotein of 64.5 kDa estimated by SDS-PAGE under reducing conditions. It exhibited maximum activity in the presence of 0.2 M NaCl, at 37 degrees C, pH 5.5 and a specificity to hyaluronan higher than that to chondroitin-4-sulphate, chondroitin-6-sulphate or dermatan. Divalent cations (Ca2+ and Mg2+) and 1 M NaCl significantly reduced the enzyme activity. The specific activity of CdtHya1 was 5066 turbidity reducing units (TRU)/mg, against 145 TRU/mg for the soluble venom, representing a 34.9-fold purification. The pure enzyme increased the diffusion of crotoxin and PLA (2) through mice tissues. CdtHya1 (32 TRU/40 mu L) potentiated crotoxin action, as evidenced by mice death, and it decreased the oedema caused by subplantar injections of buffer, crotoxin or PLA(2), thus evidencing the relevance of hyaluronidase in the crotalic envenoming. This work yielded a highly active antiedematogenic hyaluronidase from CdtV, the first one isolated from rattlesnake venoms. (C) 2012 Elsevier Masson SAS. All rights reserved.