3 resultados para Vehicule routing
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This paper discusses some aspects related to Wireless Sensor Networks over the IEEE 802.15.4 standard, and proposes, for the very first time, a mesh network topology with geographic routing integrated to the open Freescale protocol (SMAC - Simple Medium Access Control). For this is proposed the SMAC routing protocol. Before this work the SMAC protocol was suitable to perform one hop communications only. However, with the developed mechanisms, it is possible to use multi-hop communication. Performance results from the implemented protocol are presented and analyzed in order to define important requirements for wireless sensor networks, such as robustness, self-healing property and low latency. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This study addresses a vehicle routing problem with time windows, accessibility restrictions on customers, and a fleet that is heterogeneous with regard to capacity and average speed. A vehicle can performmultiple routes per day, all starting and ending at a single depot, and it is assigned to a single driverwhose totalwork hours are limited.Acolumn generation algorithmis proposed.The column generation pricing subproblem requires a specific elementary shortest path problem with resource constraints algorithm to address the possibility for each vehicle performingmultiple routes per day and to address the need to set the workday’s start time within the planning horizon. A constructive heuristic and a metaheuristic based on tabu search are also developed to find good solutions.
Resumo:
Given a large image set, in which very few images have labels, how to guess labels for the remaining majority? How to spot images that need brand new labels different from the predefined ones? How to summarize these data to route the user’s attention to what really matters? Here we answer all these questions. Specifically, we propose QuMinS, a fast, scalable solution to two problems: (i) Low-labor labeling (LLL) – given an image set, very few images have labels, find the most appropriate labels for the rest; and (ii) Mining and attention routing – in the same setting, find clusters, the top-'N IND.O' outlier images, and the 'N IND.R' images that best represent the data. Experiments on satellite images spanning up to 2.25 GB show that, contrasting to the state-of-the-art labeling techniques, QuMinS scales linearly on the data size, being up to 40 times faster than top competitors (GCap), still achieving better or equal accuracy, it spots images that potentially require unpredicted labels, and it works even with tiny initial label sets, i.e., nearly five examples. We also report a case study of our method’s practical usage to show that QuMinS is a viable tool for automatic coffee crop detection from remote sensing images.