2 resultados para Vehicle Test Driving Schedules.

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sample of 21 light duty vehicles powered by Otto cycle engines were tested on a chassis dynamometer to measure the exhaust emissions of nitrous oxide (N2O). The tests were performed at the Vehicle Emission Laboratory of CETESB (Environmental Company of the State of Sao Paulo) using the US-FTP-75 (Federal Test Procedure) driving cycle. The sample tested included passenger cars running on three types of fuels used in Brazil: gasohol, ethanol and CNG. The measurement of N2O was made using two methods: Non Dispersive InfraRed (NDIR) analyzer and Fourier Transform InfraRed spectroscopy (FTIR). Measurements of regulated pollutants were also made in order to establish correlations between N2O and NOx. The average N2O emission factors obtained by the NDIR method was 78 +/- 41 mg.km(-1) for vehicles running with gasohol, 73 +/- 45 mg.km(-1) for ethanol vehicles and 171 +/- 69 mg.km(-1) for CNG vehicles. Seventeen results using the FTIR method were also obtained. For gasohol vehicles the results showed a good agreement between the two methods, with an average emission factor of 68 +/- 41 mg.km(-1). The FTIR measurement results of N2O for ethanol and CNG vehicles were much lower than those obtained by the NDIR method. The emission factors were 17 +/- 10 mg.km(-1) and 33 +/- 17 mg.km(-1), respectively, possibly because of the interference of water vapor (present at a higher concentration in the exhaust gases of these vehicles) on measurements by the NDIR method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A semi-autonomous unmanned underwater vehicle (UUV), named LAURS, is being developed at the Laboratory of Sensors and Actuators at the University of Sao Paulo. The vehicle has been designed to provide inspection and intervention capabilities in specific missions of deep water oil fields. In this work, a method of modeling and identification of yaw motion dynamic system model of an open-frame underwater vehicle is presented. Using an on-board low cost magnetic compass sensor the method is based on the utilization of an uncoupled 1-DOF (degree of freedom) dynamic system equation and the application of the integral method which is the classical least squares algorithm applied to the integral form of the dynamic system equations. Experimental trials with the actual vehicle have been performed in a test tank and diving pool. During these experiments, thrusters responsible for yaw motion are driven by sinusoidal voltage signal profiles. An assessment of the feasibility of the method reveals that estimated dynamic system models are more reliable when considering slow and small sinusoidal voltage signal profiles, i.e. with larger periods and with relatively small amplitude and offset.