2 resultados para Vasculopathy
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Background. Chronic allograft vasculopathy (CAV) is an important cause of graft loss. Considering the immune inflammatory events involved in the development of CAV, therapeutic approaches to target this process are of relevance. Human amniotic fluid derived stem cells (hAFSCs), a class of fetal, pluripotent stem cells with intermediate characteristics between embryonic and adult stem cells, display immunomodulatory properties. hAFSCs express mesenchymal and embryonic markers, show high proliferation rates; however, they do not induce tumor formation, and their use does not raise ethical issues. Thus, we sought to investigate the effect of hAFSC on CAV in a model of aorta transplantation. Methods. Orthotopic aorta transplantation was performed using Fisher (F344) rats as donors and Lewis rats as recipients. Rats were divided into three groups: syngeneic (SYNG), untreated F344 receiving aorta from F344 (n = 8); allogeneic (ALLO), Lewis rats receiving allogeneic aorta from F344 (n = 8); and ALLO + hAFSC, ALLO rats treated with hAFSC (10(6) cells; n = 8). Histological analysis and immunohistochemistry were performed 30 days posttransplantation. Results. The ALLO group developed a robust aortic neointimal formation (208.7 +/- 25.4 gm) accompanied by a significant high number of ED1(+) (4845 +/- 841 cells/mm(2)) and CD43(+) cells (4064 +/- 563 cells/mm(2)), and enhanced expression of a-smooth muscle actin in the neointima (25 +/- 6%). Treatment with hAFSC diminished neointimal thickness (180.7 +/- 23.7 mu m) and induced a significant decrease of ED1(+) (1100 +/- 276 cells/mm(2)), CD43(+) cells (1080 +/- 309 cells/mu m(2)), and alpha-smooth muscle actin expression 8 +/- 3% in the neointima. Conclusions. These preliminary results showed that hAFSC suppressed inflammation and myofibroblast migration to the intima, which may contribute to ameliorate vascular changes in CAV.
Resumo:
BACKGROUND AND PURPOSE Independent studies in experimental models of Trypanosoma cruzi appointed different roles for endothelin-1 (ET-1) and bradykinin (BK) in the immunopathogenesis of Chagas disease. Here, we addressed the hypothesis that pathogenic outcome is influenced by functional interplay between endothelin receptors (ETAR and ETBR) and bradykinin B2 receptors (B2R). EXPERIMENTAL APPROACH Intravital microscopy was used to determine whether ETR/B2R drives the accumulation of rhodamine-labelled leucocytes in the hamster cheek pouch (HCP). Inflammatory oedema was measured in the infected BALB/c paw of mice. Parasite invasion was assessed in CHO over-expressing ETRs, mouse cardiomyocytes, endothelium (human umbilical vein endothelial cells) or smooth muscle cells (HSMCs), in the presence/absence of antagonists of B2R (HOE-140), ETAR (BQ-123) and ETBR (BQ-788), specific IgG antibodies to each GPCRs; cholesterol or calcium-depleting drugs. RNA interference (ETAR or ETBR genes) in parasite infectivity was investigated in HSMCs. KEY RESULTS BQ-123, BQ-788 and HOE-140 reduced leucocyte accumulation in HCP topically exposed to trypomastigotes and blocked inflammatory oedema in infected mice. Acting synergistically, ETAR and ETBR antagonists reduced parasite invasion of HSMCs to the same extent as HOE-140. Exogenous ET-1 potentiated T. cruzi uptake by HSMCs via ETRs/B2R, whereas RNA interference of ETAR and ETBR genes conversely reduced parasite internalization. ETRs/B2R-driven infection in HSMCs was reduced in HSMC pretreated with methyl-beta-cyclodextrin, a cholesterol-depleting drug, or in thapsigargin-or verapamil-treated target cells. CONCLUSIONS AND IMPLICATIONS Our findings suggest that plasma leakage, a neutrophil-driven inflammatory response evoked by trypomastigotes via the kinin/endothelin pathways, may offer a window of opportunity for enhanced parasite invasion of cardiovascular cells.