6 resultados para VERITY - Virtual and electronic resources for information skills training for young people
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Objectives: The aim of this pilot study was to investigate whether patients with social anxiety disorder (SAD) differ from controls in the quality of skill-related behaviors displayed during a speech and in overall behavioral adequacy as perceived by observers and by the patients themselves. Design: A total of 18 SAD patients and 18 controls were screened by a diagnostic interview and took part in a 3-minute speech of their own choosing. For each videotaped speech, observers rated the adequacy of the skill-related behaviors and overall performance adequacy. After the experiment, participants were asked to rate their own overall performance adequacy. Results: The results showed that SAD patients exhibited significantly worse voice intonation and fluency of the speech, however no differences were found in global self-ratings. Moreover, the performance evaluations of the SAD group were consistent with the observers, while the controls evaluated their performance lower than the observers. Conclusions: The results are inconsistent with the cognitive model, because patients with SAD did not underestimate their performance. Compared with spontaneous interactions, the clear rules established for such social situations as speeches may result in less cognitive distortion for SAD patients. (C) 2012 Wiley Periodicals, Inc. J. Clin. Psychol. 68:397-402, 2012.
Resumo:
The respiration of metal oxides by the bacterium Geobacter sulfurreducens requires the assembly of a small peptide (the GS pilin) into conductive filaments termed pili. We gained insights into the contribution of the GS pilin to the pilus conductivity by developing a homology model and performing molecular dynamics simulations of the pilin peptide in vacuo and in solution. The results were consistent with a predominantly helical peptide containing the conserved a-helix region required for pilin assembly but carrying a short carboxy-terminal random-coiled segment rather than the large globular head of other bacterial pilins. The electronic structure of the pain was also explored from first principles and revealed a biphasic charge distribution along the pilin and a low electronic HOMO-LUMO gap, even in a wet environment. The low electronic band gap was the result of strong electrostatic fields generated by the alignment of the peptide bond dipoles in the pilin's alpha-helix and by charges from ions in solution and amino acids in the protein. The electronic structure also revealed some level of orbital delocalization in regions of the pilin containing aromatic amino acids and in spatial regions of high resonance where the HOMO and LUMO states are, which could provide an optimal environment for the hopping of electrons under thermal fluctuations. Hence, the structural and electronic features of the pilin revealed in these studies support the notion of a pilin peptide environment optimized for electron conduction.
Resumo:
Tropical forests are experiencing an increase in the proportion of secondary forests as a result of the balance between the widespread harvesting of old-growth forests and the regeneration in abandoned areas. The impacts of such a process on biodiversity are poorly known and intensely debated. Recent reviews and multi-taxa studies indicate that species replacement in wildlife assemblages is a consistent pattern, sometimes stronger than changes in diversity, with a replacement from habitat generalists to old-growth specialists being commonly observed during tropical forest regeneration. However, the ecological drivers of such compositional changes are rarely investigated, despite its importance in assessing the conservation value of secondary forests, and to support and guide management techniques for restoration. By sampling 28 sites in a continuous Atlantic forest area in Southeastern Brazil, we assessed how important aspects of habitat structure and food resources for wildlife change across successional stages, and point out hypotheses on the implications of these changes for wildlife recovery. Old-growth areas presented a more complex structure at ground level (deeper leaf litter, and higher woody debris volume) and higher fruit availability from an understorey palm, whereas vegetation connectivity, ground-dwelling arthropod biomass, and total fruit availability were higher in earlier successional stages. From these results we hypothetize that generalist species adapted to fast population growth in resource-rich environments should proliferate and dominate earlier successional stages, while species with higher competitive ability in resource-limited environments, or those that depend on resources such as palm fruits, on higher complexity at the ground level, or on open space for flying, should dominate older-growth forests. Since the identification of the drivers of wildlife recovery is crucial for restoration strategies, it is important that future work test and further develop the proposed hypotheses. We also found structural and functional differences between old-growth forests and secondary forests with more than 80 years of regeneration, suggesting that restoration strategies may be crucial to recover structural and functional aspects expected to be important for wildlife in much altered ecosystems, such as the Brazilian Atlantic forest. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We performed an ab initio investigation on the properties of rutile tin oxide (SnOx) nanowires. We computed the wire properties determining the equilibrium geometries, binding energies, and electronic band structures for several wire dimensions and surface facet configurations. The results allowed us to establish scaling laws for the structural properties, in terms of the nanowire perimeters. The results also showed that the surface states control most of the electronic properties of the nanowires. Oxygen incorporation in the nanowire surfaces passivated the surface-related electronic states, and the resulting quantum properties and scaling laws were fully consistent with electrons confined inside the nanowire. Additionally, oxygen incorporation in the wire surfaces generated an unbalanced concentration of spin up and down electrons, leading to magnetic states for the nanowires.
Resumo:
The hydration of mesityl oxide (MOx) was investigated through a sequential quantum mechanics/molecular mechanics approach. Emphasis was placed on the analysis of the role played by water in the MOx syn-anti equilibrium and the electronic absorption spectrum. Results for the structure of the MOx-water solution, free energy of solvation and polarization effects are also reported. Our main conclusion was that in gas-phase and in low-polarity solvents, the MOx exists dominantly in syn-form and in aqueous solution in anti-form. This conclusion was supported by Gibbs free energy calculations in gas phase and in-water by quantum mechanical calculations with polarizable continuum model and thermodynamic perturbation theory in Monte Carlo simulations using a polarized MOx model. The consideration of the in-water polarization of the MOx is very important to correctly describe the solute-solvent electrostatic interaction. Our best estimate for the shift of the pi-pi* transition energy of MOx, when it changes from gas-phase to water solvent, shows a red-shift of -2,520 +/- 90 cm(-1), which is only 110 cm(-1) (0.014 eV) below the experimental extrapolation of -2,410 +/- 90 cm(-1). This red-shift of around -2,500 cm(-1) can be divided in two distinct and opposite contributions. One contribution is related to the syn -> anti conformational change leading to a blue-shift of similar to 1,700 cm(-1). Other contribution is the solvent effect on the electronic structure of the MOx leading to a red-shift of around -4,200 cm(-1). Additionally, this red-shift caused by the solvent effect on the electronic structure can by composed by approximately 60 % due to the electrostatic bulk effect, 10 % due to the explicit inclusion of the hydrogen-bonded water molecules and 30 % due to the explicit inclusion of the nearest water molecules.
Resumo:
The knowledge of electronic and local structures is a fundamental step towards understanding the properties of ferroelectric ceramics. X-ray absorption near-edge structure (XANES) of Pb1-xLaxZr0.40Ti0.60O3 ferroelectric samples was measured in order to know how the local order and electronic structure are related to their ferroelectric property, which was tailored by the substitution of lead by lanthanum atoms. The analysis of XANES spectra collected at Ti K- and L-edges XANES showed that the substitution of Pb by La leads to a decrement of local distortion around Ti atoms on the TiO6 octahedron. The analysis of O K-edge XANES spectra showed that the hybridization between O 2p and Pb 6sp states is related to the displacement of Ti atoms in the TiO6 octahedra. Based on these results, it is possible to determine that the degree of ferroelectricity in these samples and the manifestation of relaxor behavior are directly related to the weakening of O 2p and Pb 6sp hybridization. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4720472]