12 resultados para VECTOR-BORNE PATHOGENS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In order to assess the epidemiological potential of the Culicidae species in remaining areas of the Brazilian Atlantic Forest, specimens of this family were collected in wild and anthropic environments. A total of 9,403 adult mosquitoes was collected from May, 2009 to June, 2010. The most prevalent among species collected in the wild environment were Anopheles (Kerteszia) cruzii, the Melanoconion section of Culex (Melanoconion), and Aedes serratus, while the most common in the anthropic site were Coquillettidia chrysonotum/albifera, Culex (Culex) Coronator group, and An. (Ker.) cruzii. Mosquito richness was similar between environments, although the abundance of individuals from different species varied. When comparing diversity patterns between environments, anthropic sites exhibited higher richness and evenness, suggesting that environmental stress increased the number of favorable niches for culicids, promoting diversity. Increased abundance of opportunistic species in the anthropic environment enhances contact with culicids that transmit vector-borne diseases.
Resumo:
We employ the approach of stochastic dynamics to describe the dissemination of vector-borne diseases such as dengue, and we focus our attention on the characterization of the threshold of the epidemic. The coexistence space comprises two representative spatial structures for both human and mosquito populations. The human population has its evolution described by a process that is similar to the Susceptible-Infected-Recovered (SIR) dynamics. The population of mosquitoes follows a dynamic of the type of the Susceptible Infected-Susceptible (SIS) model. The coexistence space is a bipartite lattice constituted by two structures representing the human and mosquito populations. We develop a truncation scheme to solve the evolution equations for the densities and the two-site correlations from which we get the threshold of the disease and the reproductive ratio. We present a precise deØnition of the reproductive ratio which reveals the importance of the correlations developed in the early stage of the disease. According to our deØnition, the reproductive rate is directed related to the conditional probability of the occurrence of a susceptible human (mosquito) given the presence in the neighborhood of an infected mosquito (human). The threshold of the epidemic as well as the phase transition between the epidemic and the non-epidemic states are also obtained by performing Monte Carlo simulations. References: [1] David R. de Souza, T^ania Tom∂e, , Suani R. T. Pinho, Florisneide R. Barreto and M∂ario J. de Oliveira, Phys. Rev. E 87, 012709 (2013). [2] D. R. de Souza, T. Tom∂e and R. M. ZiÆ, J. Stat. Mech. P03006 (2011).
Resumo:
The aim of the current study was to investigate the exposure of captive wild felids to various infectious pathogens using serological and molecular methods. One hundred and fifty-nine neotropic felids and 51 exotic felids from 28 captive settings in Brazil were tested. While antibodies against Feline parvovirus and Feline coronavirus (FCoV), Feline calicivirus and Bartonella spp. were frequently detected by serologic tests, antibodies against Felid herpesvirus 1 or infection with hemotropic mycoplasmas were less prevalent. Serologic evidence of exposure to Ehrlichia spp., Feline immunodeficiency virus, and Feline leukemia virus (FeLV) was detected rarely, and infections with FeLV, Ehrlichia spp., and Cytauxzoon spp. were found infrequently. The detected Bartonella sequence was molecularly similar to B. koehlerae and B. henselae; for Cytauxzoon, the sequence resembled those from domestic cats. No Anaplasma phagocytophilum and Theileria spp. infections were detected. The positive test results varied significantly among different facilities and species. Additionally, FCoV seropositivity was more prevalent in captivity than in free-ranging populations. Results suggest that testing is appropriate prior to relocation of felids.
Resumo:
Dengue is considered one of the most important vector-borne infection, affecting almost half of the world population with 50 to 100 million cases every year. In this paper, we present one of the simplest models that can encapsulate all the important variables related to vector control of dengue fever. The model considers the human population, the adult mosquito population and the population of immature stages, which includes eggs, larvae and pupae. The model also considers the vertical transmission of dengue in the mosquitoes and the seasonal variation in the mosquito population. From this basic model describing the dynamics of dengue infection, we deduce thresholds for avoiding the introduction of the disease and for the elimination of the disease. In particular, we deduce a Basic Reproduction Number for dengue that includes parameters related to the immature stages of the mosquito. By neglecting seasonal variation, we calculate the equilibrium values of the model’s variables. We also present a sensitivity analysis of the impact of four vector-control strategies on the Basic Reproduction Number, on the Force of Infection and on the human prevalence of dengue. Each of the strategies was studied separately from the others. The analysis presented allows us to conclude that of the available vector control strategies, adulticide application is the most effective, followed by the reduction of the exposure to mosquito bites, locating and destroying breeding places and, finally, larvicides. Current vector-control methods are concentrated on mechanical destruction of mosquitoes’ breeding places. Our results suggest that reducing the contact between vector and hosts (biting rates) is as efficient as the logistically difficult but very efficient adult mosquito’s control.
Resumo:
Biofilms represent a great concern for food industry, since they can be a source of persistent contamination leading to food spoilage and to the transmission of diseases. To avoid the adhesion of bacteria and the formation of biofilms, an alternative is the pre-conditioning of surfaces using biosurfactants, microbial compounds that can modify the physicochemical properties of surfaces changing bacterial interactions and consequently adhesion. Different concentrations of the biosurfactants, surfactin from Bacillus subtilis and rhamnolipids from Pseudomonas aeruginosa, were evaluated to reduce the adhesion and to disrupt biofilms of food-borne pathogenic bacteria. Individual cultures and mixed cultures of Staphylococcus aureus, Listeria monocytogenes and Salmonella Enteritidis were studied using polystyrene as the model surface. The pre-conditioning with surfactin 0.25% reduced by 42.0% the adhesion of L monocytogenes and S. Enteritidis, whereas the treatment using rhamnolipids 1.0% reduced by 57.8% adhesion of L monocytogenes and by 67.8% adhesion of S. aureus to polystyrene.Biosurfactants were less effective to avoid adhesion of mixed cultures of the bacteria when compared with individual cultures. After 2 h contact with surfactin at 0.1% concentration, the pre-formed biofilms of S. aureus were reduced by 63.7%, L. monocytogenesby 95.9%, S. Enteritidis by 35.5% and the mixed culture biofilm by 58.5%. The rhamnolipids at 0.25% concentration removed 58.5% the biofilm of S. aureus, 26.5% of L monocytogenes, 23.0% of S. Enteritidis and 24.0% the mixed culture after 2 h contact. In general, the increase in concentration of biosurfactants and in the time of contact decreased biofilm removal percentage. These results suggest that surfactin and rhamnolipids can be explored to control the attachment and to disrupt biofilms of individual and mixed cultures of the food-borne pathogens. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A dimensional analysis of the classical equations related to the dynamics of vector-borne infections is presented. It is provided a formal notation to complete the expressions for the Ross' threshold theorem, the Macdonald's basic reproduction "rate" and sporozoite "rate", Garret-Jones' vectorial capacity and Dietz-Molineaux-Thomas' force of infection. The analysis was intended to provide a formal notation that complete the classical equations proposed by these authors.
Resumo:
Introduction: This study analyzed the occurrence and the contamination of triatomines by trypanosomatids in Orbignya speciosa (babassu) specimens in the State of Rondonia, Brazil, in two different environments (pasture and woods). Methods: Capture of triatomines on babassus and microscopic search for trypanosomatids in their digestive tube were carried out. Results: Four hundred ninety-four (494) specimens were captured (Rhodnius prolixus and R.robustus), of which 35.6% of the triatomines were positive for trypanosomatids. Conclusions: The high index of natural infection along with the abundance of triatomines points out to the necessity to create an epidemiological surveillance system to monitor vector-borne transmission and deepen the studies on the ecology of such vectors in the Amazon.
Resumo:
Fumarate hydratases (FHs; EC 4.2.1.2) are enzymes that catalyze the reversible hydration of fumarate to S-malate. Parasitic protists that belong to the genus Leishmania and are responsible for a complex of vector-borne diseases named leishmaniases possess two genes that encode distinct putative FH enzymes. Genome sequence analysis of Leishmania major Friedlin reveals the existence of genes LmjF24.0320 and LmjF29.1960 encoding the putative enzymes LmFH-1 and LmFH-2, respectively. In the present work, the FH activity of both L. major enzymes has been confirmed. Circular dichroism studies suggest important differences in terms of secondary structure content when comparing LmFH isoforms and even larger differences when comparing them to the homologous human enzyme. CD melting experiments revealed that both LmFH isoforms are thermolabile enzymes. The catalytic efficiency under aerobic and anaerobic environments suggests that they are both highly sensitive to oxidation and damaged by oxygen. Intracellular localization studies located LmFH-1 in the mitochondrion, whereas LmFH-2 was found predominantly in the cytosol with possibly also some in glycosomes. The high degree of sequence conservation in different Leishmania species, together with the relevance of FH activity for the energy metabolism in these parasites suggest that FHs might be exploited as targets for broad-spectrum antileishmanial drugs. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
The efficacy of liposome-encapsulated nisin and bacteriocin-like substance (BLS) P34 to control growth of Listeria monocytogenes in Minas frescal cheese was investigated. Nisin and BLS P34 were encapsulated in partially purified soybean phosphatidylcholine (PC-1) and PC-1-cholesterol (7:3) liposomes. PC-1 nanovesicles were previously characterized. PC-1-cholesterol encapsulated nisin and BLS P34 presented, respectively, 218 nm and 158 nm diameters, zeta potential of -64 mV and -53 mV, and entrapment efficiency of 88.9% and 100%. All treatments reduced the population of L monocytogenes compared to the control during 21 days of storage of Minas frescal cheese at 7 degrees C. However, nisin and BLS P34 encapsulated in PC-1-cholesterol liposomes were less efficient in controlling L monocytogenes growth in comparison with free and PC-1 liposome-encapsulated bacteriocins. The highest inhibitory effect was observed for nisin and BLS P34 encapsulated in PC-1 liposomes after 10 days of storage of the product The encapsulation of bacteriocins in liposomes of partially purified soybean phosphatidylcholine may be a promising technology for the control of food-borne pathogens in cheeses. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
INTRODUCTION: This study analyzed the occurrence and the contamination of triatomines by trypanosomatids in Orbignya speciosa (babassu) specimens in the State of Rondônia, Brazil, in two different environments (pasture and woods). METHODS: Capture of triatomines on babassus and microscopic search for trypanosomatids in their digestive tube were carried out. RESULTS: Four hundred ninety-four (494) specimens were captured (Rhodnius prolixus and R.robustus), of which 35.6% of the triatomines were positive for trypanosomatids. CONCLUSIONS: The high index of natural infection along with the abundance of triatomines points out to the necessity to create an epidemiological surveillance system to monitor vector-borne transmission and deepen the studies on the ecology of such vectors in the Amazon.
Resumo:
We developed a stochastic lattice model to describe the vector-borne disease (like yellow fever or dengue). The model is spatially structured and its dynamical rules take into account the diffusion of vectors. We consider a bipartite lattice, forming a sub-lattice of human and another occupied by mosquitoes. At each site of lattice we associate a stochastic variable that describes the occupation and the health state of a single individual (mosquito or human). The process of disease transmission in the human population follows a similar dynamic of the Susceptible-Infected-Recovered model (SIR), while the disease transmission in the mosquito population has an analogous dynamic of the Susceptible-Infected-Susceptible model (SIS) with mosquitos diffusion. The occurrence of an epidemic is directly related to the conditional probability of occurrence of infected mosquitoes (human) in the presence of susceptible human (mosquitoes) on neighborhood. The probability of diffusion of mosquitoes can facilitate the formation of pairs Susceptible-Infected enabling an increase in the size of the epidemic. Using an asynchronous dynamic update, we study the disease transmission in a population initially formed by susceptible individuals due to the introduction of a single mosquito (human) infected. We find that this model exhibits a continuous phase transition related to the existence or non-existence of an epidemic. By means of mean field approximations and Monte Carlo simulations we investigate the epidemic threshold and the phase diagram in terms of the diffusion probability and the infection probability.
Resumo:
Rickettsia rickettsii is an obligate intracellular tick-borne bacterium that causes Rocky Mountain Spotted Fever (RMSF), the most lethal spotted fever rickettsiosis. When an infected starving tick begins blood feeding from a vertebrate host, R. rickettsii is exposed to a temperature elevation and to components in the blood meal. These two environmental stimuli have been previously associated with the reactivation of rickettsial virulence in ticks, but the factors responsible for this phenotype conversion have not been completely elucidated. Using customized oligonucleotide microarrays and high-throughput microfluidic qRT-PCR, we analyzed the effects of a 10 degrees C temperature elevation and of a blood meal on the transcriptional profile of R. rickettsii infecting the tick Amblyomma aureolatum. This is the first study of the transcriptome of a bacterium in the genus Rickettsia infecting a natural tick vector. Although both stimuli significantly increased bacterial load, blood feeding had a greater effect, modulating five-fold more genes than the temperature upshift. Certain components of the Type IV Secretion System (T4SS) were up-regulated by blood feeding. This suggests that this important bacterial transport system may be utilized to secrete effectors during the tick vector's blood meal. Blood feeding also up-regulated the expression of antioxidant enzymes, which might correspond to an attempt by R. rickettsii to protect itself against the deleterious effects of free radicals produced by fed ticks. The modulated genes identified in this study, including those encoding hypothetical proteins, require further functional analysis and may have potential as future targets for vaccine development.