3 resultados para Urban system

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Air pollution is associated with a substantial burden on human health; however, the most important pollutants may vary with location. Proper monitoring is necessary to determine the effect of these pollutants on respiratory health. Objectives: This study was designed to evaluate the role of outdoor, indoor and personal exposure to combustion-related pollutants NO2 and O-3 on respiratory health of children in a non-affluent urban area of Sao Paulo, Brazil. Methods: Levels of NO2 and O-3 were continuously measured in outdoor and indoor air, as well as personal exposure, for 30 days using passive measurement monitors. Respiratory health was assessed with a Brazilian version of the ISAAC questionnaire. Results: Complete data were available from 64 children, aged 6-10 years. Respiratory morbidity was high, with 43 (67.2%) reporting having had wheezing at any time, 27 (42.2%) wheezing in the last month, 17 (26.6%) asthma at any time and 21(32.8%) pneumonia at any time. Correlations between levels of NO2 and O-3 measured in the three locations evaluated were poor. Levels of NO2 in indoor air and personal exposure to O-3 were independently associated with asthma (both cases P=.02), pneumonia (O-3, P=.02) and wheezing at any time (both cases P<.01). No associations were seen between outdoor NO2 and O-3 and respiratory health. Conclusions: Exposure to higher levels of NO2 and O-3 was associated with increased risk for asthma and pneumonia in children. Nonetheless, the place where the pollutants are measured influences the results. The measurements taken in indoor and personal exposure were the most accurate. (C) 2012 SEPAR. Published by Elsevier Espana, S.L. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Pierre Auger Observatory is a facility built to detect air showers produced by cosmic rays above 10(17) eV. During clear nights with a low illuminated moon fraction, the UV fluorescence light produced by air showers is recorded by optical telescopes at the Observatory. To correct the observations for variations in atmospheric conditions, atmospheric monitoring is performed at regular intervals ranging from several minutes (for cloud identification) to several hours (for aerosol conditions) to several days (for vertical profiles of temperature, pressure, and humidity). In 2009, the monitoring program was upgraded to allow for additional targeted measurements of atmospheric conditions shortly after the detection of air showers of special interest, e. g., showers produced by very high-energy cosmic rays or showers with atypical longitudinal profiles. The former events are of particular importance for the determination of the energy scale of the Observatory, and the latter are characteristic of unusual air shower physics or exotic primary particle types. The purpose of targeted (or "rapid") monitoring is to improve the resolution of the atmospheric measurements for such events. In this paper, we report on the implementation of the rapid monitoring program and its current status. The rapid monitoring data have been analyzed and applied to the reconstruction of air showers of high interest, and indicate that the air fluorescence measurements affected by clouds and aerosols are effectively corrected using measurements from the regular atmospheric monitoring program. We find that the rapid monitoring program has potential for supporting dedicated physics analyses beyond the standard event reconstruction.