4 resultados para Underwater acoustics.

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes the design, implementation, and experiences with AcMus, an open and integrated software platform for room acoustics research, which comprises tools for measurement, analysis, and simulation of rooms for music listening and production. Through use of affordable hardware, such as laptops, consumer audio interfaces and microphones, the software allows evaluation of relevant acoustical parameters with stable and consistent results, thus providing valuable information in the diagnosis of acoustical problems, as well as the possibility of simulating modifications in the room through analytical models. The system is open-source and based on a flexible and extensible Java plug-in framework, allowing for cross-platform portability, accessibility and experimentation, thus fostering collaboration of users, developers and researchers in the field of room acoustics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: An experimental in vitro study was carried out to evaluate the influence of cortical bone thickness on ultrasound propagation velocity. Methods: Sixty bone plates were used, made from bovine femurs, with thickness ranging from 1 to 6 mm (10 of each). The ultrasound velocity measurements were performed using a device specially designed for this purpose, in an underwater acoustic tank and with direct contact using contact gel. The transducers were positioned in two ways: on opposite sides, with the bone between them, for the transverse measurement; and parallel to each other, on the same side of the bone plates, for the axial measurements. Results: In the axial transmission mode, the ultrasound velocity speed increased with cortical bone thickness, regardless of the distance between the transducers, up to a thickness of 5 mm, then remained constant thereafter. There were no changes in velocity when the transverse measures were made. Conclusion: Ultrasound velocity increased with cortical bone thickness in the axial transmission mode, until the thickness surpasses the wavelength, after which point it remained constant. Level of Evidence: Experimental Study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A semi-autonomous unmanned underwater vehicle (UUV), named LAURS, is being developed at the Laboratory of Sensors and Actuators at the University of Sao Paulo. The vehicle has been designed to provide inspection and intervention capabilities in specific missions of deep water oil fields. In this work, a method of modeling and identification of yaw motion dynamic system model of an open-frame underwater vehicle is presented. Using an on-board low cost magnetic compass sensor the method is based on the utilization of an uncoupled 1-DOF (degree of freedom) dynamic system equation and the application of the integral method which is the classical least squares algorithm applied to the integral form of the dynamic system equations. Experimental trials with the actual vehicle have been performed in a test tank and diving pool. During these experiments, thrusters responsible for yaw motion are driven by sinusoidal voltage signal profiles. An assessment of the feasibility of the method reveals that estimated dynamic system models are more reliable when considering slow and small sinusoidal voltage signal profiles, i.e. with larger periods and with relatively small amplitude and offset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of the works published on hydrodynamic parameter identification of open-frame underwater vehicles focus their attention almost exclusively on good coherence between simulated and measured responses, giving less importance to the determination of “actual values” for hydrodynamic parameters. To gain insight into hydrodynamic parameter experimental identification of open-frame underwater vehicles, an experimental identification procedure is proposed here to determine parameters of uncoupled and coupled models. The identification procedure includes: (i) a prior estimation of actual values of the forces/torques applied to the vehicle, (ii) identification of drag parameters from constant velocity tests and (iii) identification of inertia and coupling parameters from oscillatory tests; at this stage, the estimated values of drag parameter obtained in item (ii) are used. The procedure proposed here was used to identify the hydrodynamic parameters of LAURS—an unmanned underwater vehicle developed at the University of São Paulo. The thruster–thruster and thruster–hull interactions and the advance velocity of the vehicle are shown to have a strong impact on the efficiency of thrusters appended to open-frame underwater vehicles, especially for high advance velocities. Results of tests with excitation in 1-DOF and 3-DOF are reported and discussed, showing the feasibility of the developed procedure.