19 resultados para Unconstrained and convex optimization

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of mechanical aspects related to cell activity and its environment is becoming more evident due to their influence in stem cell differentiation and in the development of diseases such as atherosclerosis. The mechanical tension homeostasis is related to normal tissue behavior and its lack may be related to the formation of cancer, which shows a higher mechanical tension. Due to the complexity of cellular activity, the application of simplified models may elucidate which factors are really essential and which have a marginal effect. The development of a systematic method to reconstruct the elements involved in the perception of mechanical aspects by the cell may accelerate substantially the validation of these models. This work proposes the development of a routine capable of reconstructing the topology of focal adhesions and the actomyosin portion of the cytoskeleton from the displacement field generated by the cell on a flexible substrate. Another way to think of this problem is to develop an algorithm to reconstruct the forces applied by the cell from the measurements of the substrate displacement, which would be characterized as an inverse problem. For these kind of problems, the Topology Optimization Method (TOM) is suitable to find a solution. TOM is consisted of an iterative application of an optimization method and an analysis method to obtain an optimal distribution of material in a fixed domain. One way to experimentally obtain the substrate displacement is through Traction Force Microscopy (TFM), which also provides the forces applied by the cell. Along with systematically generating the distributions of focal adhesion and actin-myosin for the validation of simplified models, the algorithm also represents a complementary and more phenomenological approach to TFM. As a first approximation, actin fibers and flexible substrate are represented through two-dimensional linear Finite Element Method. Actin contraction is modeled as an initial stress of the FEM elements. Focal adhesions connecting actin and substrate are represented by springs. The algorithm was applied to data obtained from experiments regarding cytoskeletal prestress and micropatterning, comparing the numerical results to the experimental ones

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new myrmicine ant, Tropidomyrmex elianae gen. n. & sp. n., is described from southeastern and central Brazil, based on workers, ergatoid gynes, males and larvae. Tropidomyrmex workers are relatively small, monomorphic, characterized mainly by the feebly pigmented and extremely thin integument; subfalcate mandibles bearing a single apical tooth; palpal formula 1,2; clypeus relatively broad and convex; reduced compound eyes; propodeum unarmed and with a strongly medially depressed declivous face; double and bilobed well developed subpostpetiolar processes; and peculiarities in the sting apparatus. A colony fragment of T. elianae containing workers, ergatoid gynes, males, and brood was found inside a ground termite nest (Anoplotermes pacificus Apicotermitinae) in a montane rocky scrubland in the state of Minas Gerais, southeastern Brazil. Tropidomyrmex elianae is known also from two workers collected in leaf litter samples processed with a Winkler extractor, from the state of Tocantins, central-north Brazil. Despite the differences from the accepted solenopsidine genera, Tropidomyrmex is tentatively assigned to this tribe. Within the solenopsidine ants, the genus is apparently related to Tranopelta. Tropidomyrmex is marked by extreme reductions, perhaps reflecting adaptations to particular habits and habitats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past few years, the field of global optimization has been very active, producing different kinds of deterministic and stochastic algorithms for optimization in the continuous domain. These days, the use of evolutionary algorithms (EAs) to solve optimization problems is a common practice due to their competitive performance on complex search spaces. EAs are well known for their ability to deal with nonlinear and complex optimization problems. Differential evolution (DE) algorithms are a family of evolutionary optimization techniques that use a rather greedy and less stochastic approach to problem solving, when compared to classical evolutionary algorithms. The main idea is to construct, at each generation, for each element of the population a mutant vector, which is constructed through a specific mutation operation based on adding differences between randomly selected elements of the population to another element. Due to its simple implementation, minimum mathematical processing and good optimization capability, DE has attracted attention. This paper proposes a new approach to solve electromagnetic design problems that combines the DE algorithm with a generator of chaos sequences. This approach is tested on the design of a loudspeaker model with 17 degrees of freedom, for showing its applicability to electromagnetic problems. The results show that the DE algorithm with chaotic sequences presents better, or at least similar, results when compared to the standard DE algorithm and other evolutionary algorithms available in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a metaheuristic algorithm inspired in evolutionary computation and swarm intelligence concepts and fundamentals of echolocation of micro bats. The aim is to optimize the mono and multiobjective optimization problems related to the brushless DC wheel motor problems, which has 5 design parameters and 6 constraints for the mono-objective problem and 2 objectives, 5 design parameters, and 5 constraints for multiobjective version. Furthermore, results are compared with other optimization approaches proposed in the recent literature, showing the feasibility of this newly introduced technique to high nonlinear problems in electromagnetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract This paper describes a design methodology for piezoelectric energy harvester s that thinly encapsulate the mechanical devices and expl oit resonances from higher- order vibrational modes. The direction of polarization determines the sign of the pi ezoelectric tensor to avoid cancellations of electric fields from opposite polarizations in the same circuit. The resultant modified equations of state are solved by finite element method (FEM). Com- bining this method with the solid isotropic material with penalization (SIMP) method for piezoelectric material, we have developed an optimization methodology that optimizes the piezoelectric material layout and polarization direc- tion. Updating the density function of the SIMP method is performed based on sensitivity analysis, the sequen- tial linear programming on the early stage of the opti- mization, and the phase field method on the latter stage

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Synchronous telecommunication networks, distributed control systems and integrated circuits have its accuracy of operation dependent on the existence of a reliable time basis signal extracted from the line data stream and acquirable to each node. In this sense, the existence of a sub-network (inside the main network) dedicated to the distribution of the clock signals is crucially important. There are different solutions for the architecture of the time distribution sub-network and choosing one of them depends on cost, precision, reliability and operational security. In this work we expose: (i) the possible time distribution networks and their usual topologies and arrangements. (ii) How parameters of the network nodes can affect the reachability and stability of the synchronous state of a network. (iii) Optimizations methods for synchronous networks which can provide low cost architectures with operational precision, reliability and security. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, a dynamic programming approach to deal with the unconstrained two-dimensional non-guillotine cutting problem is presented. The method extends the recently introduced recursive partitioning approach for the manufacturer's pallet loading problem. The approach involves two phases and uses bounds based on unconstrained two-staged and non-staged guillotine cutting. The method is able to find the optimal cutting pattern of a large number of pro blem instances of moderate sizes known in the literature and a counterexample for which the approach fails to find known optimal solutions was not found. For the instances that the required computer runtime is excessive, the approach is combined with simple heuristics to reduce its running time. Detailed numerical experiments show the reliability of the method. Journal of the Operational Research Society (2012) 63, 183-200. doi: 10.1057/jors.2011.6 Published online 17 August 2011

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective To evaluate the changes in tissue perfusion parameters in dogs with severe sepsis/septic shock in response to goal-directed hemodynamic optimization in the ICU and their relation to outcome. Design Prospective observational study. Setting ICU of a veterinary university medical center. Animals Thirty dogs with severe sepsis or septic shock caused by pyometra who underwent surgery and were admitted to the ICU. Measurements and Main Results Severe sepsis was defined as the presence of sepsis and sepsis-induced dysfunction of one or more organs. Septic shock was defined as the presence of severe sepsis plus hypotension not reversed with fluid resuscitation. After the presumptive diagnosis of sepsis secondary to pyometra, blood samples were collected and clinical findings were recorded. Volume resuscitation with 0.9% saline solution and antimicrobial therapy were initiated. Following abdominal ultrasonography and confirmation of increased uterine volume, dogs underwent corrective surgery. After surgery, the animals were admitted to the ICU, where resuscitation was guided by the clinical parameters, central venous oxygen saturation (ScvO2), lactate, and base deficit. Between survivors and nonsurvivors it was observed that the ScvO2, lactate, and base deficit on ICU admission were each related independently to death (P = 0.001, P = 0.030, and P < 0.001, respectively). ScvO2 and base deficit were found to be the best discriminators between survivors and nonsurvivors as assessed via receiver operator characteristic curve analysis. Conclusion Our study suggests that ScvO2 and base deficit are useful in predicting the prognosis of dogs with severe sepsis and septic shock; animals with a higher ScvO2 and lower base deficit at admission to the ICU have a lower probability of death.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, the effects of uncertainty and expected costs of failure on optimum structural design are investigated, by comparing three distinct formulations of structural optimization problems. Deterministic Design Optimization (DDO) allows one the find the shape or configuration of a structure that is optimum in terms of mechanics, but the formulation grossly neglects parameter uncertainty and its effects on structural safety. Reliability-based Design Optimization (RBDO) has emerged as an alternative to properly model the safety-under-uncertainty part of the problem. With RBDO, one can ensure that a minimum (and measurable) level of safety is achieved by the optimum structure. However, results are dependent on the failure probabilities used as constraints in the analysis. Risk optimization (RO) increases the scope of the problem by addressing the compromising goals of economy and safety. This is accomplished by quantifying the monetary consequences of failure, as well as the costs associated with construction, operation and maintenance. RO yields the optimum topology and the optimum point of balance between economy and safety. Results are compared for some example problems. The broader RO solution is found first, and optimum results are used as constraints in DDO and RBDO. Results show that even when optimum safety coefficients are used as constraints in DDO, the formulation leads to configurations which respect these design constraints, reduce manufacturing costs but increase total expected costs (including expected costs of failure). When (optimum) system failure probability is used as a constraint in RBDO, this solution also reduces manufacturing costs but by increasing total expected costs. This happens when the costs associated with different failure modes are distinct. Hence, a general equivalence between the formulations cannot be established. Optimum structural design considering expected costs of failure cannot be controlled solely by safety factors nor by failure probability constraints, but will depend on actual structural configuration. (c) 2011 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We deal with the optimization of the production of branched sheet metal products. New forming techniques for sheet metal give rise to a wide variety of possible profiles and possible ways of production. In particular, we show how the problem of producing a given profile geometry can be modeled as a discrete optimization problem. We provide a theoretical analysis of the model in order to improve its solution time. In this context we give the complete convex hull description of some substructures of the underlying polyhedron. Moreover, we introduce a new class of facet-defining inequalities that represent connectivity constraints for the profile and show how these inequalities can be separated in polynomial time. Finally, we present numerical results for various test instances, both real-world and academic examples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work aimed to apply genetic algorithms (GA) and particle swarm optimization (PSO) in cash balance management using Miller-Orr model, which consists in a stochastic model that does not define a single ideal point for cash balance, but an oscillation range between a lower bound, an ideal balance and an upper bound. Thus, this paper proposes the application of GA and PSO to minimize the Total Cost of cash maintenance, obtaining the parameter of the lower bound of the Miller-Orr model, using for this the assumptions presented in literature. Computational experiments were applied in the development and validation of the models. The results indicated that both the GA and PSO are applicable in determining the cash level from the lower limit, with best results of PSO model, which had not yet been applied in this type of problem.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Solution of structural reliability problems by the First Order method require optimization algorithms to find the smallest distance between a limit state function and the origin of standard Gaussian space. The Hassofer-Lind-Rackwitz-Fiessler (HLRF) algorithm, developed specifically for this purpose, has been shown to be efficient but not robust, as it fails to converge for a significant number of problems. On the other hand, recent developments in general (augmented Lagrangian) optimization techniques have not been tested in aplication to structural reliability problems. In the present article, three new optimization algorithms for structural reliability analysis are presented. One algorithm is based on the HLRF, but uses a new differentiable merit function with Wolfe conditions to select step length in linear search. It is shown in the article that, under certain assumptions, the proposed algorithm generates a sequence that converges to the local minimizer of the problem. Two new augmented Lagrangian methods are also presented, which use quadratic penalties to solve nonlinear problems with equality constraints. Performance and robustness of the new algorithms is compared to the classic augmented Lagrangian method, to HLRF and to the improved HLRF (iHLRF) algorithms, in the solution of 25 benchmark problems from the literature. The new proposed HLRF algorithm is shown to be more robust than HLRF or iHLRF, and as efficient as the iHLRF algorithm. The two augmented Lagrangian methods proposed herein are shown to be more robust and more efficient than the classical augmented Lagrangian method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work studies the optimization and control of a styrene polymerization reactor. The proposed strategy deals with the case where, because of market conditions and equipment deterioration, the optimal operating point of the continuous reactor is modified significantly along the operation time and the control system has to search for this optimum point, besides keeping the reactor system stable at any possible point. The approach considered here consists of three layers: the Real Time Optimization (RTO), the Model Predictive Control (MPC) and a Target Calculation (TC) that coordinates the communication between the two other layers and guarantees the stability of the whole structure. The proposed algorithm is simulated with the phenomenological model of a styrene polymerization reactor, which has been widely used as a benchmark for process control. The complete optimization structure for the styrene process including disturbances rejection is developed. The simulation results show the robustness of the proposed strategy and the capability to deal with disturbances while the economic objective is optimized.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The influence of glycerol concentration (C-g), process temperature (T-p), drying temperature (T-s), and relative humidity (RH) on the properties of achira flour films was initially assessed. The optimized process conditions were C-g of 17g glycerol/100g flour, T-p of 90 degrees C, T-s of 44.8 degrees C, and RH of 36.4%. The films produced under these conditions displayed high mechanical strength (7.0 MPa), low solubility (38.3%). and satisfactory elongation values (14.6%). This study showed that achira flour is a promising source for the development of biodegradable films with good mechanical properties, low water vapor permeability, and solubility compared to films based on other tubers. (c) 2011 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The evolution of the structure and properties of Cr/Cr oxide thin films deposited on HK40 steel substrates by reactive magnetron sputtering (RMS) was investigated and linked to their potential protective behavior against metal dusting. Deposition time, mode of oxygen feeding, and application of bias voltage were varied to assess their effect on the density, adhesion, and integrity of the films. All the films showed a very fine columnar microstructure and the presence of amorphous Cr oxide. Both, an increasing time and a constant oxygen flow during deposition led to the development of relatively low density films and mud-like cracking patterns. A graded oxygen flow resulted in films with fewer cracks, but a careful control of the oxygen flow is required to obtain films with a truly graded structure. The effect of the bias voltage was much more significant and beneficial. An increasing negative bias voltage resulted in the development of denser films with a transition to an almost crack-free structure and better adhesion. The amorphous oxide resulted in low values of hardness and Young's modulus. (C) 2012 Elsevier B.V. All rights reserved.