3 resultados para Uht Yoghurt

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study evaluated the effect of the supplementation of total dietary fiber from apple, banana or passion fruit processing by-products on the post-acidification, total titratable acidity, bacteria counts and fatty acid profiles in skim milk yoghurts co-fermented by four different probiotics strains: Lactobacillus acidophilus L10 and Bifidobacterium animalis subsp. lactis BL04, HN019 and B94. Apple and banana fibers increased the probiotic viability during shelf-life. All the fibers were able to increase the short chain and polyunsaturated fatty acid contents of yoghurts compared to their respective controls. A synergistic effect between the type of fiber and the probiotic strain on the conjugated linoleic acid content was observed, and the amount of alpha-linolenic acid was increased by banana fiber. The results of this study demonstrate, for the first time, that fruit fibers can improve the fatty acid profile of probiotic yoghurts and point out the suitability of using fibers from fruit processing the by-products to develop new high value-added fermented dairy products. (C) 2012 Elsevier By. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of the addition of passion fruit peel powder (PFPP) on the fermentation kinetics and texture parameters, post-acidification and bacteria counts of probiotic yoghurts made with two milk types were evaluated during 28 days of storage at 4 degrees C. Milks were fermented by Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (CY340), and one strain of probiotic bacteria: Lactobacillus acidophilus (L10 and NCFM), Bifidobacterium animalis subsp. lactis (8104 and HN019). The addition of PFPP reduced significantly fermentation time of skim milk co-fermented by the strains L10, NCFM and HN019. At the end of 28-day shelf-life, counts of B. lactis Bl04 were about 1 Log CFU mL(-1) higher in whole yoghurt fermented with PFPP regarding its control but, in general, the addition of PFPP had less influence on counts than the milk type itself. The titratable acidity in yoghurts with PFPP was significantly higher than in their respective controls, and in skim yoghurts higher than in the whole ones. The PFPP increased firmness, consistency (except for the NCFM strain of L acidophilus) and cohesiveness of all skim yoghurts. The results point out the suitability of using passion fruit by-product in the formulation of both skim and whole probiotic yoghurts. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study evaluated by an in vitro model the effect of beverages on dental enamel previously subjected to erosive challenge with hydrochloric acid. The factor under study was the type of beverage, in five levels: Sprite® Zero Low-calorie Soda Lime (positive control), Parmalat® ultra high temperature (UHT) milk, Ades® Original soymilk, Leão® Ice Tea Zero ready-to-drink low-calorie peach-flavored black teaand Prata® natural mineral water (negative control). Seventy-five bovine enamel specimens were distributed among the five types of beverages (n=15), according to a randomized complete block design. For the formation of erosive wear lesions, the specimens were immersed in 10 mL aqueous solution of hydrochloric acid 0.01 M for 2 min. Subsequently, the specimens were immersed in 20 mL of the beverages for 1 min, twice daily for 2 days at room temperature. In between, the specimens were kept in 20 mL of artificial saliva at 37ºC. The response variable was the quantitative enamel microhardness. ANOVA and Tukey's test showed highly significant differences (p<0.00001) in the enamel exposed to hydrochloric acid and beverages. The soft drink caused a significantly higher decrease in microhardness compared with the other beverages. The black tea caused a significantly higher reduction in microhardness than the mineral water, UHT milk and soymilk, but lower than the soft drink. Among the analyzed beverages, the soft drink and the black tea caused the most deleterious effects on dental enamel microhardness.