5 resultados para Truck terminals
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Long-haul drivers work in irregular schedules due to load delivery demands. In general, driving and sleeping occur at irregular times and, consequently, partial sleep deprivation and/or circadian misalignment may emerge and result in sleepiness at the wheel. In this way, the aim of this study was to verify changes in the postural control parameters of professional drivers after one-night working. Eight male truck drivers working at night - night drivers (ND) and nine day drivers (DD) volunteered to participate in this study. The night drivers' postural stability was assessed immediately before and after an approximately 430 km journey by two identical force platforms at departure and arrival sites. The DD group was measured before and after a day's work. An interaction effect of time of day and type of shift in both conditions: eyes open (p < 0.01) and eyes closed (p < 0.001) for amplitude of mediolateral movements was observed. Postural stability, measured by force platform, is affected by a night of work, suggesting that it could be an effect of circadian and homeostatic influences over postural control.
Resumo:
A number of studies to better understand the complex physiological mechanism involved in regulating body weight have been conducted. More specifically, the hormones related to appetite, leptin and ghrelin, and their association to obesity have been a focus of investigation. Circadian patterns of these hormones are a new target of research. The behaviour of these hormones in individuals subject to atypical working times such as shiftwork remains unclear. Shiftwork is characterized by changes in biological rhythms and cumulative circadian phase changes, being associated with high rates of obesity and metabolic syndrome. Truck drivers, who work irregular shifts, frequently present a high prevalence of obesity, which might be associated with work-related factors and/or lifestyle. In this context, the aim of this paper was to discuss the relationship of body mass index, appetite-related hormones and sleep characteristics in truck drivers who work irregular shifts compared with day workers.
Resumo:
Drugs are important risk factors for traffic accidents. In Brazil, truck drivers report using amphetamines to maintain their extensive work schedule and stay awake. These drugs can be obtained without prescription easily on Brazilian roads. The use of these stimulants can result in health problems and can be associated with traffic accidents. There are Brazilian studies that show that drivers use drugs. However, these studies are questionnaire-based and do not always reflect real-life situations. The purpose of this study was to demonstrate the prevalence of drug use by truck drivers on the roads of Sao Paulo State, Brazil, during 2009. Drivers of large trucks were randomly stopped by police officers on the interstate roads during morning hours. After being informed of the goals of the study, the drivers gave written informed consent before providing a urine sample. In addition, a questionnaire concerning sociodemographic characteristics and health information was administered. Urine samples were screened for amphetamines, cocaine, and cannabinoids by immunoassay and the confirmation was performed using gas chromatography-mass spectrometry (GC-MS). Of the 488 drivers stopped, 456 (93.4%) provided urine samples, and 9.3% of them (n = 42) tested positive for drugs. Amphetamines were the most commonly found (n = 26) drug, representing 61.9% of the positive samples. Ten cases tested positive for cocaine (23.8%), and five for cannabinoids (11.9%). All drivers were male with a mean age of 40 +/- 10.8 years, and 29.3% of them reported some health problem (diabetes, high blood pressure and/or stress). A high incidence of truck drivers who tested positive for drug use was found, among other reported health problems. Thus, there is an evident need to promote a healthier lifestyle among professional drivers and a need for preventive measures aimed at controlling the use of drugs by truck drivers in Brazil. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Mezzarane RA, Kohn AF, Couto-Roldan E, Martinez L, Flores A, Manjarrez E. Absence of effects of contralateral group I muscle afferents on presynaptic inhibition of Ia terminals in humans and cats. J Neurophysiol 108: 1176-1185, 2012. First published June 6, 2012; doi:10.1152/jn.00831.2011.-Crossed effects from group I afferents on reflex excitability and their mechanisms of action are not yet well understood. The current view is that the influence is weak and takes place indirectly via oligosynaptic pathways. We examined possible contralateral effects from group I afferents on presynaptic inhibition of Ia terminals in humans and cats. In resting and seated human subjects the soleus (SO) H-reflex was conditioned by an electrical stimulus to the ipsilateral common peroneal nerve (CPN) to assess the level of presynaptic inhibition (PSI_control). A brief conditioning vibratory stimulus was applied to the triceps surae tendon at the contralateral side (to activate preferentially Ia muscle afferents). The amplitude of the resulting H-reflex response (PSI_conditioned) was compared to the H-reflex under PSI_control, i.e., without the vibration. The interstimulus interval between the brief vibratory stimulus and the electrical shock to the CPN was -60 to 60 ms. The H-reflex conditioned by both stimuli did not differ from that conditioned exclusively by the ipsilateral CPN stimulation. In anesthetized cats, bilateral monosynaptic reflexes (MSRs) in the left and right L 7 ventral roots were recorded simultaneously. Conditioning stimulation applied to the contralateral group I posterior biceps and semitendinosus (PBSt) afferents at different time intervals (0-120 ms) did not have an effect on the ipsilateral gastrocnemius/soleus (GS) MSR. An additional experimental paradigm in the cat using contralateral tendon vibration, similar to that conducted in humans, was also performed. No significant differences between GS-MSRs conditioned by ipsilateral PBSt stimulus alone and those conditioned by both ipsilateral PBSt stimulus and contralateral tendon vibration were detected. The present results strongly suggest an absence of effects from contralateral group I fibers on the presynaptic mechanism of MSR modulation in relaxed humans and anesthetized cats.