7 resultados para Troposphere

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titan's optical and near-IR spectra result primarily from the scattering of sunlight by haze and its absorption by methane. With a column abundance of 92 km amagat (11 times that of Earth), Titan's atmosphere is optically thick and only similar to 10% of the incident solar radiation reaches the surface, compared to 57% on Earth. Such a formidable atmosphere obstructs investigations of the moon's lower troposphere and surface, which are highly sensitive to the radiative transfer treatment of methane absorption and haze scattering. The absorption and scattering characteristics of Titan's atmosphere have been constrained by the Huygens Probe Descent Imager/Spectral Radiometer (DISR) experiment for conditions at the probe landing site (Tomasko, M.G., Bezard, B., Doose, L., Engel, S., Karkoschka, E. 120084 Planet. Space Sci. 56, 624-247: Tomasko, M.G. et al. [2008b] Planet. Space Sci. 56, 669-707). Cassini's Visual and Infrared Mapping Spectrometer (VIMS) data indicate that the rest of the atmosphere (except for the polar regions) can be understood with small perturbations in the high haze structure determined at the landing site (Penteado, P.F., Griffith, CA., Tomasko, M.G., Engel, S., See, C., Doose, L, Baines, K.H., Brown, R.H., Buratti, B.J., Clark, R., Nicholson, P., Sotin, C. [2010]. Icarus 206, 352-365). However the in situ measurements were analyzed with a doubling and adding radiative transfer calculation that differs considerably from the discrete ordinates codes used to interpret remote data from Cassini and ground-based measurements. In addition, the calibration of the VIMS data with respect to the DISR data has not yet been tested. Here, VIMS data of the probe landing site are analyzed with the DISR radiative transfer method and the faster discrete ordinates radiative transfer calculation; both models are consistent (to within 0.3%) and reproduce the scattering and absorption characteristics derived from in situ measurements. Constraints on the atmospheric opacity at wavelengths outside those measured by DISR, that is from 1.6 to 5.0 mu m, are derived using clouds as diffuse reflectors in order to derive Titan's surface albedo to within a few percent error and cloud altitudes to within 5 km error. VIMS spectra of Titan at 2.6-3.2 mu m indicate not only spectral features due to CH4 and CH3D (Rannou, P., Cours, T., Le Mouelic, S., Rodriguez, S., Sotin, C., Drossart, P., Brown, R. [2010]. Icarus 208, 850-867), but also a fairly uniform absorption of unknown source, equivalent to the effects of a darkening of the haze to a single scattering albedo of 0.63 +/- 0.05. Titan's 4.8 mu m spectrum point to a haze optical depth of 0.2 at that wavelength. Cloud spectra at 2 mu m indicate that the far wings of the Voigt profile extend 460 cm(-1) from methane line centers. This paper releases the doubling and adding radiative transfer code developed by the DISR team, so that future studies of Titan's atmosphere and surface are consistent with the findings by the Huygens Probe. We derive the surface albedo at eight spectral regions of the 8 x 12 km(2) area surrounding the Huygens landing site. Within the 0.4-1.6 mu m spectral region our surface albedos match DISR measurements, indicating that DISR and VIMS measurements are consistently calibrated. These values together with albedos at longer 1.9-5.0 mu m wavelengths, not sampled by DISR, resemble a dark version of the spectrum of Ganymede's icy leading hemisphere. The eight surface albedos of the landing site are consistent with, but not deterministic of, exposed water ice with dark impurities. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isoprene is emitted from many terrestrial plants at high rates, accounting for an estimated 1/3 of annual global volatile organic compound emissions from all anthropogenic and biogenic sources combined. Through rapid photooxidation reactions in the atmosphere, isoprene is converted to a variety of oxidized hydrocarbons, providing higher order reactants for the production of organic nitrates and tropospheric ozone, reducing the availability of oxidants for the breakdown of radiatively active trace gases such as methane, and potentially producing hygroscopic particles that act as effective cloud condensation nuclei. However, the functional basis for plant production of isoprene remains elusive. It has been hypothesized that in the cell isoprene mitigates oxidative damage during the stress-induced accumulation of reactive oxygen species (ROS), but the products of isoprene-ROS reactions in plants have not been detected. Using pyruvate-2-13C leaf and branch feeding and individual branch and whole mesocosm flux studies, we present evidence that isoprene (i) is oxidized to methyl vinyl ketone and methacrolein (iox) in leaves and that iox/i emission ratios increase with temperature, possibly due to an increase in ROS production under high temperature and light stress. In a primary rainforest in Amazonia, we inferred significant in plant isoprene oxidation (despite the strong masking effect of simultaneous atmospheric oxidation), from its influence on the vertical distribution of iox uptake fluxes, which were shifted to low isoprene emitting regions of the canopy. These observations suggest that carbon investment in isoprene production is larger than that inferred from emissions alone and that models of tropospheric chemistry and biotachemistryclimate interactions should incorporate isoprene oxidation within both the biosphere and the atmosphere with potential implications for better understanding both the oxidizing power of the troposphere and forest response to climate change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Metropolitan Area of Sao Paulo (MASP), located in southeastern Brazil, surface ozone concentrations are often well above the national air quality standards. In this experimental study, we attempted to characterize the vertical profile of atmospheric ozone and transport of the ozone plume in the boundary layer, using data from the first ozone soundings ever taken in the MASP. In 2006, we launched fifteen ozonesondes: eight from 15 to 18 May (dry season); and seven from 30 October to 1 November (wet season). Vertical ozone mixing ratios in the troposphere were approximately 40 ppb, reaching maximum values of approximately 60 ppb during the dry-season campaign and approximately 100 ppb during the wet-season campaign. In the first and second campaigns, the mean tropospheric ozone column abundance was 28.2 and 41.3 DU, respectively, which can be attributed to the considerable variation in the annual temperature cycle over the region. To determine the effect that biomass burning has on ozone concentrations over the MASP, we analyzed wind trajectories and satellite-derived fire counts. We cannot state unequivocally that biomass burning contributed to higher ozone concentrations above the boundary layer during the experimental campaigns. In the boundary layer, ozone concentrations increase with altitude, peaking at the base of the inversion layer, suggesting that local emissions of volatile organic compounds and nitrogen oxides play a significant role in the lower troposphere over MASP, influencing ozone formation not only at the surface but also vertically in the atmosphere and in distant regions. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the first time, multiwavelength polarization Raman lidar observations of optical and microphysical particle properties over the Amazon Basin are presented. The fully automated advanced Raman lidar was deployed 60 km north of Manaus, Brazil (2.5 degrees S, 60 degrees W) in the Amazon rain forest from January to November 2008. The measurements thus cover both the wet season (Dec-June) and the dry or burning season (July-Nov). Two cases studies of young and aged smoke plumes are discussed in terms of spectrally resolved optical properties (355, 532, and 1064 nm) and further lidar products such as particle effective radius and single-scattering albedo. These measurement examples confirm that biomass burning aerosols show a broad spectrum of optical, microphysical, and chemical properties. The statistical analysis of the entire measurement period revealed strong differences between the pristine wet and the polluted dry season. African smoke and dust advection frequently interrupt the pristine phases during the wet season. Compared to pristine wet season conditions, the particle scattering coefficients in the lowermost 2 km of the atmosphere were found to be enhanced, on average, by a factor of 4 during periods of African aerosol intrusion and by a factor of 6 during the dry (burning) season. Under pristine conditions, the particle extinction coefficients and optical depth for 532 nm wavelength were frequently as low as 10-30 Mm(-1) and <0.05, respectively. During the dry season, biomass burning smoke plumes reached to 3-5 km height and caused a mean optical depth at 532 nm of 0.26. On average during that season, particle extinction coefficients (532 nm) were of the order of 100 Mm(-1) in the main pollution layer (up to 2 km height). Angstrom exponents were mainly between 1.0 and 1.5, and the majority of the observed lidar ratios were between 50-80 sr.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tropical regions, especially the Amazon region, account for large emissions of methane (CH4). Here, we present CH4 observations from two airborne campaigns conducted within the BARCA (Balanco Atmosferico Regional de Carbono na Amazonia) project in the Amazon basin in November 2008 (end of the dry season) and May 2009 (end of the wet season). We performed continuous measurements of CH4 onboard an aircraft for the first time in the Amazon region, covering the whole Amazon basin with over 150 vertical profiles between altitudes of 500 m and 4000 m. The observations support the finding of previous ground-based, airborne, and satellite measurements that the Amazon basin is a large source of atmospheric CH4. Isotope analysis verified that the majority of emissions can be attributed to CH4 emissions from wetlands, while urban CH4 emissions could be also traced back to biogenic origin. A comparison of five TM5 based global CH4 inversions with the observations clearly indicates that the inversions using SCIAMACHY observations represent the BARCA observations best. The calculated CH4 flux estimate obtained from the mismatch between observations and TM5-modeled CH4 fields ranges from 36 to 43 mg m(-2) d(-1) for the Amazon lowland region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cirrus clouds are an interesting point in the research of the atmosphere due their behavior and the effect on the earth radiation budget. They can affect the atmospheric radiation budget by reflecting the incoming solar radiation and absorbing the outgoing terrestrial radiation. Also, this cloud type is involved in the dehydration of the upper troposphere and lower stratosphere. So, it is interesting to increment the measurements of this type of clouds from the ground. During November and December 2012, through the CHUVA-SUL campaign, measurements with lidar in Santa Maria, Rio Grande do Sul were conducted. The system installed in Santa Maria site (29.8 °S; 53.7 °W, 100 m asl) was a single elastic-backscatter lidar using the wavelength of 532 nm. Some days with cirrus clouds lidar measurements were detected. Four days with presence of cirrus cloud are showed in the present study. These days, 7, 8, 19 and 28 November 2012, was selected due the persistence of cirrus clouds over many hours. The raw retrieval lidar signals and inverted backscatter coefficient profiles were analyzed for the selected days. Base and top height was obtained by analysis of raw signal and backscatter coefficient. Extinction coefficient profiles were obtained by the assumption of the lidar ratio. Cirrus cloud optical depth (COD) values were calculated, from the integration of the extinction coefficient between the base and top altitudes of the cirrus clouds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomass burning represents one of the largest sources of particulate matter to the atmosphere, which results in a significant perturbation to the Earth’s radiative balance coupled with serious negative impacts on public health. Globally, biomass burning aerosols are thought to exert a small warming effect of 0.03 Wm-2, however the uncertainty is 4 times greater than the central estimate. On regional scales, the impact is substantially greater, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months (usually from August-October). Furthermore, a growing number of people live within the Amazon region, which means that they are subject to the deleterious effects on their health from exposure to substantial volumes of polluted air. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil, are presented here. A suite of instrumentation was flown on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft and was supported by ground based measurements, with extensive measurements made in Porto Velho, Rondonia. The aircraft sampled a range of conditions with sampling of fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate.