16 resultados para Tropical soils
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
A central goal in unsaturated soil mechanics research is to create a smooth transition between traditional soil mechanics approaches and an approach that is applicable to unsaturated soils. Undrained shear strength and the liquidity index of reconstituted or remoulded saturated soils are consistently correlated, which has been demonstrated by many studies. In the liquidity index range from 1 (at w(l)) to 0 (at w(p)), the shear strength ranges from approximately 2 kPa to 200 kPa. Similarly, for compacted soil, the shear strength at the plastic limit ranges from 150 kPa to 250 kPa. When compacted at their optimum water content, most soils have a suction that ranges from 20 kPa to 500 kPa; however, in the field, compacted materials are subjected to drying and wetting, which affect their initial suction and as a consequence their shear strength. Unconfined shear tests were performed on five compacted tropical soils and kaolin. Specimens were tested in the as-compacted condition, and also after undergoing drying or wetting. The test results and data from prior literature were examined, taking into account the roles of void ratio, suction, and relative water content. An interpretation of the phenomena that are involved in the development of the undrained shear strength of unsaturated soils in the contexts of soil water retention and Atterberg limits is presented, providing a practical view of the behaviour of compacted soil based on the concept of unsaturated soil. Finally, an empirical correlation is presented that relates the unsaturated state of compacted soils to the unconfined shear strength.
Resumo:
Soil sulfur (S) partitioning among the various pools and changes in tropical pasture ecosystems remain poorly understood. Our study aimed to investigate the dynamics and distribution of soil S fractions in an 8-year-old signal grass (Brachiaria decumbens Stapf.) pasture fertilized with nitrogen (N) and S. A factorial combination of two N rates (0 and 600?kg N ha1 y1, as NH4NO3) and two S rates (0 and 60?kg S ha1 y1, as gypsum) were applied to signal grass pastures during 2 y. Cattle grazing was controlled during the experimental period. Organic S was the major S pool found in the tropical pasture soil, and represented 97% to 99% of total S content. Among the organic S fractions, residual S was the most abundant (42% to 67% of total S), followed by ester-bonded S (19% to 42%), and C-bonded S (11% to 19%). Plant-available inorganic SO4-S concentrations were very low, even for the treatments receiving S fertilizers. Low inorganic SO4-S stocks suggest that S losses may play a major role in S dynamics of sandy tropical soils. Nitrogen and S additions affected forage yield, S plant uptake, and organic S fractions in the soil. Among the various soil fractions, residual S showed the greatest changes in response to N and S fertilization. Soil organic S increased in plots fertilized with S following the residual S fraction increment (16.6% to 34.8%). Soils cultivated without N and S fertilization showed a decrease in all soil organic S fractions.
Resumo:
Understanding the underlying mechanisms that account for the impact of potassium (K) fertilization and its replacement by sodium (Na) on tree growth is key to improving the management of forest plantations that are expanding over weathered tropical soils with low amounts of exchangeable bases. A complete randomized block design was planted with Eucalyptus grandis (W. Hill ex Maiden) to quantify growth, carbon uptake and carbon partitioning using a carbon budget approach. A combination of approaches including the establishment of allometric relationships over the whole rotation and measurements of soil CO2 efflux and aboveground litterfall at the end of the rotation were used to estimate aboveground net production (ANPP), total belowground carbon flux and gross primary production (GPP). The stable carbon isotope (delta C-13) of stem wood alpha-cellulose produced every year was used as a proxy for stomatal limitation of photosynthesis. Potassium fertilization increased GPP and decreased the fraction of carbon allocated belowground. Aboveground net production was strongly enhanced, and because leaf lifespan increased, leaf biomass was enhanced without any change in leaf production, and wood production (P-W) was dramatically increased. Sodium application decreased the fraction of carbon allocated belowground in a similar way, and enhanced GPP, ANPP and P-W, but to a lesser extent compared with K fertilization. Neither K nor Na affected delta C-13 of stem wood alpha-cellulose, suggesting that water-use efficiency was the same among the treatments and that the inferred increase in leaf photosynthesis was not only related to a higher stomatal conductance. We concluded that the response to K fertilization and Na addition on P-W resulted from drastic changes in carbon allocation.
Resumo:
The availability and uptake of Cd by lettuce (Lactuca sativa L.) in two common tropical soils (before and after liming) were studied in order to derive human health-based risk soil concentration. Cadmium concentrations ranging from 1 to 12 mg kg(-1) were added to samples from a clayey Oxisol and a sandy-loam Ultisol under glasshouse conditions. After incubation, a soil sample was taken from each pot, the concentration of Cd in the soil was determined, lettuce was grown during 36 d, and the edible parts were harvested and analyzed for Cd. A positive linear correlation was observed between total soil Cd and the Cd concentration in lettuce. The amount of Cd absorbed by lettuce grown in the Ultisol was about twice the amount absorbed in the Oxisol. Liming increased the soil pH and slightly reduced Cd availability and uptake. CaCl2 extraction was better than DTPA to reflect differences in binding strength of Cd between limed and unlimed soils. Risk Cd concentrations in the Ultisol were lower than in the Oxisol, reflecting the greater degree of uptake from the Ultisol. The derived risk Cd values were dependent on soil type and the exposure scenario.
Resumo:
The Antarctic is a pristine environment that contributes to the maintenance of the global climate equilibrium. The harsh conditions of this habitat are fundamental to selecting those organisms able to survive in such an extreme habitat and able to support the relatively simple ecosystems. The DNA of the microbial community associated with the rhizospheres of Deschampsia antarctica Desv (Poaceae) and Colobanthus quitensis (Kunth) BartI (Caryophyllaceae), the only two native vascular plants that are found in Antarctic ecosystems, was evaluated using a 16S rRNA multiplex 454 pyrosequencing approach. This analysis revealed similar patterns of bacterial diversity between the two plant species from different locations, arguing against the hypothesis that there would be differences between the rhizosphere communities of different plants. Furthermore, the phylum distribution presented a peculiar pattern, with a bacterial community structure different from those reported of many other soils. Firmicutes was the most abundant phylum in almost all the analyzed samples, and there were high levels of anaerobic representatives. Also, some phyla that are dominant in most temperate and tropical soils, such as Acidobacteria, were rarely found in the analyzed samples. Analyzing all the sample libraries together, the predominant genera found were Bifidobacterium (phylum Actinobacteria), Arcobacter (phylum Proteobacteria) and Faecalibacterium (phylum Firmicutes). To the best of our knowledge, this is the first major bacterial sequencing effort of this kind of soil, and it revealed more than expected diversity within these rhizospheres of both maritime Antarctica vascular plants in Admiralty Bay, King George Island, which is part of the South Shetlands archipelago. The ISME Journal (2010) 4, 989-1001; doi:10.1038/ismej.2010.35; published online 1 April 2010
Resumo:
The genera Exiguobacterium and Psychrobacter have been frequently detected in and isolated from polar permafrost and ice. These two genera have members that can grow at temperatures as low as -5 and -10 degrees C, respectively. We used quantitative PCR (Q-PCR) to quantify members of these genera in 54 soil or sediment samples from polar, temperate and tropical environments to determine to what extent they are selected by cold environments. These results were further analyzed by multiple linear regression to identify the most relevant environmental factors corresponding to their distribution. Exiguobacterium was detected in all three climatic zones at similar densities, but was patchier in the temperate and tropical samples. Psychrobacter was present in almost all polar samples, was at highest densities in Antarctica sediment samples, but was in very low densities and infrequently detected in temperate and tropical soils. Clone libraries, specific for the 16S rRNA gene for each genus, were constructed from a sample from each climatic region. The clone libraries were analyzed for alpha and beta diversities, as well as for variation in population structure by using analysis of molecular variance. Results confirm that both genera were found in all three climatic zones; however, Psychrobacter populations seemed to be much more diverse than Exiguobacterium in all three climatic zones. Furthermore, Psychrobacter populations from Antarctica are different from those in Michigan and Puerto Rico, which are similar to each other. The ISME Journal (2009) 3, 658-665; doi: 10.1038/ismej.2009.25; published online 26 March 2009
Resumo:
In tropical forests, the environmental heterogeneity can provide niche partitioning at local scales and determine the diversity and plant species distribution. Thus, this study aimed to investigate the variations of tree species structure and distribution in response to relief and soil profile features in a portion of the largest remnant of Brazilian Atlantic rain forest. All trees >= 5 cm diameter at breast height were recorded in two 0.99 ha plots. Topographic survey and a soil characterization were accomplished in both plots. Topsoil samples (0-20 cm) were taken from 88 quadrats and analyzed for chemical and particle size properties. Differences for both diversity and tree density were identified among three kinds of soils. A canonical correspondence analysis (CCA) indicated that the specific abundance varied among the three kinds of soils mapped: a shallow Udept - Orthent / Aquent gradient, probably due to differences in soil drainage. Nutrient content was less likely to affect tree species composition and distribution than relief, pH, Al3+, and soil texture. Some species were randomly distributed and did not show restriction to relief and soil properties. However, preferences in niche occupation detected in this study, derived from the catenary environments found, rise up as an important explanation for the high tree species diversity in tropical forests.
Resumo:
The objective of this work was to evaluate the catabolic gene diversity for the bacterial degradation of aromatic hydrocarbons in anthropogenic dark earth of Amazonia (ADE) and their biochar (BC). Functional diversity analyses in ADE soils can provide information on how adaptive microorganisms may influence the fertility of soils and what is their involvement in biogeochemical cycles. For this, clone libraries containing the gene encoding for the alpha subunit of aromatic ring-hydroxylating dioxygenases (alpha-A RH D bacterial gene) were constructed, totaling 800 clones. These libraries were prepared from samples of an ADE soil under two different land uses, located at the Caldeirao Experimental Station secondary forest (SF) and agriculture (AG)-, and the biochar (SF_BC and AG_BC, respectively). Heterogeneity estimates indicated greater diversity in BC libraries; and Venn diagrams showed more unique operational protein clusters (OPC) in the SF_BC library than the ADE soil, which indicates that specific metabolic processes may occur in biochar. Phylogenetic analysis showed unidentified dioxygenases in ADE soils. Libraries containing functional gene encoding for the alpha subunit of the aromatic ring-hydroxylating dioxygenases (ARHD) gene from biochar show higher diversity indices than those of ADE under secondary forest and agriculture.
Resumo:
Embora os ftalatos sejam um dos poluentes mais frequentemente encontrados no meio ambiente, há escassez de dados na literatura sobre biorremediação de solos tropicais contaminados por esses compostos. Por esse motivo, este estudo avaliou a biorremediação de um solo contaminado com os plastificantes DEHP (Bis-2-etilhexilftalato), DIDP (Di-isodecilftalato) e álcool isobutílico, por uma indústria no Estado de São Paulo. A biorremediação ocorreu pela utilização de microrganismos presentes no solo e pela adição de inóculo adaptado em reator em fase de lama. O reator foi monitorado durante 120 dias, sendo corrigida apenas a umidade do solo. Os resultados indicaram que a biodegradação dos ftalatos seguiu uma cinética de primeira ordem e a biorremediação ocorreu na faixa de pH entre 7,4 e 8,4 e temperaturas entre 17 e 25 ºC, com eficiência de remoção de contaminantes acima de 70 %. Após 120 dias, o teor de DEHP estava abaixo de 4 mg kg-1, limite estipulado pela legislação brasileira para solo de uso residencial.
Resumo:
The study of the hydro-physical behavior in soils using toposequences is of great importance for better understanding the soil, water and vegetation relationships. This study aims to assess the hydro-physical and morphological characterization of soil from a toposequence in Galia, state of São Paulo, Brazil). The plot covers an area of 10.24 ha (320 × 320 m), located in a semi-deciduous seasonal forest. Based on ultra-detailed soil and topographic maps of the area, a representative transect from the soil in the plot was chosen. Five profiles were opened for the morphological description of the soil horizons, and hydro-physical and micromorphological analyses were performed to characterize the soil. Arenic Haplustult, Arenic Haplustalf and Aquertic Haplustalf were the soil types observed in the plot. The superficial horizons had lower density and greater hydraulic conductivity, porosity and water retention in lower tensions than the deeper horizons. In the sub-superficial horizons, greater water retention at higher tensions and lower hydraulic conductivity were observed, due to structure type and greater clay content. The differences observed in the water retention curves between the sandy E and the clay B horizons were mainly due to the size distribution, shape and type of soil pores.
Resumo:
Changes in bioavailability of phosphorus (P) during pedogenesis and ecosystem development have been shown for geogenic calcium phosphate (Ca-P). However, very little is known about long-term changes of biogenic Ca-P in soil. Long-term transformation characteristics of biogenic Ca-P were examined using anthropogenic soils along a chronosequence from centennial to millennial time scales. Phosphorus fractionation of Anthrosols resulted in overall consistency with the Walker and Syers model of geogenic Ca-P transformation during pedogenesis. The biogenic Ca-P (e.g., animal and fish bones) disappeared to 3% of total P within the first ca. 2,000 years of soil development. This change concurred with increases in P adsorbed on metal-oxides surfaces, organic P, and occluded P at different pedogenic time. Phosphorus K-edge X-ray absorption near-edge structure (XANES) spectroscopy revealed that the crystalline and therefore thermodynamically most stable biogenic Ca-P was transformed into more soluble forms of Ca-P over time. While crystalline hydroxyapatite (34% of total P) dominated Ca-P species after about 600-1,000 years, beta-tricalcium phosphate increased to 16% of total P after 900-1,100 years, after which both Ca-P species disappeared. Iron-associated P was observable concurrently with Ca-P disappearance. Soluble P and organic P determined by XANES maintained relatively constant (58-65%) across the time scale studied. Disappearance of crystalline biogenic Ca-P on a time scale of a few thousand years appears to be ten times faster than that of geogenic Ca-P.
Resumo:
The effects of foliar and soil applied phosphite on grain yield in common bean (Phaseolus vulgaris L.) grown in a weathered soil under low and adequate phosphate availability were evaluated. In the first experiment, treatments were composed of a 2 x 7 + 2 factorial scheme, with 2 soil P levels supplied as phosphate (40 e 200 mg P dm(-3) soil), 7 soil P levels supplied as phosphite (0-100 mg P dm(-3) soil), and 2 additional treatments (without P supply in soil, and all P supplied as phosphite). In the second experiment, treatments were composed of a 2 x 3 x 2 factorial scheme, with 2 soil phosphate levels (40 e 200 mg P dm(-3) soil), combined with 3 nutrient sources applied via foliar sprays (potassium phosphite, potassium phosphate, and potassium chloride as a control), and 2 foliar application numbers (single and two application). Additional treatments showed that phosphite is not P source for common bean nutrition. Phosphite supply in soil increased the P content in shoot (at full physiological maturity stage) and grains, but at the same time considerably decreased grain yield, regardless of the soil phosphate availability. Foliar sprays of phosphite decreased grain yield in plants grown under low soil phosphate availability, but no effect was observed in plants grown under adequate soil phosphate availability. In general, foliar sprays of phosphate did not satisfactorily improve grain yield of the common bean plants grown under low soil phosphate availability.
Resumo:
Obtaining ecotoxicological data on pesticides in tropical regions is imperative for performing more realistic risk analysis, and avoidance tests have been proposed as a useful, fast and cost-effective tool. Therefore, the present study aimed to evaluate the avoidance behavior of Eisenia andrei to a formulated product, Vertimec(A (R)) 18 EC (a.i abamectin), in tests performed on a reference tropical artificial soil (TAS), to derive ecotoxicological data on tropical conditions, and a natural soil (NS), simulating crop field conditions. In TAS tests an adaptation of the substrate recommended by OECD and ISO protocols was used, with residues of coconut fiber as a source of organic matter. Concentrations of the pesticide on TAS test ranged from 0 to 7 mg abamectin/kg (dry weight-d.w.). In NS tests, earthworms were exposed to samples of soils sprayed in situ with: 0.9 L of Vertimec(A (R)) 18 EC/ha (RD); twice as much this dosage (2RD); and distilled water (Control), respectively, and to 2RD: control dilutions (12.5, 25, 50, 75%). All tests were performed under 25 +/- A 2A degrees C, to simulate tropical conditions, and a 12hL:12hD photoperiod. The organisms avoided contaminated TAS for an EC50,48h = 3.918 mg/kg soil d.w., LOEC = 1.75 mg/kg soil d.w. and NOEC = 0.85 mg/kg soil d.w. No significant avoidance response occurred for any NS test. Abamectin concentrations in NS were rather lower than EC50, 48h and LOEC determined in TAS tests. The results obtained contribute to overcome a lack of ecotoxicological data on pesticides under tropical conditions, but more tests with different soil invertebrates are needed to improve pesticides risk analysis.
Resumo:
The aim of the present study is to contribute an ecologically relevant assessment of the ecotoxicological effects of pesticide applications in agricultural areas in the tropics, using an integrated approach with information gathered from soil and aquatic compartments. Carbofuran, an insecticide/nematicide used widely on sugarcane crops, was selected as a model substance. To evaluate the toxic effects of pesticide spraying for soil biota, as well as the potential indirect effects on aquatic biota resulting from surface runoff and/or leaching, field and laboratory (using a cost-effective simulator of pesticide applications) trials were performed. Standard ecotoxicological tests were performed with soil (Eisenia andrei, Folsomia candida, and Enchytraeus crypticus) and aquatic (Ceriodaphnia silvestrii) organisms, using serial dilutions of soil, eluate, leachate, and runoff samples. Among soil organisms, sensitivity was found to be E. crypticus < E. andrei < F. candida. Among the aqueous extracts, mortality of C. silvestrii was extreme in runoff samples, whereas eluates were by far the least toxic samples. A generally higher toxicity was found in the bioassays performed with samples from the field trial, indicating the need for improvements in the laboratory simulator. However, the tool developed proved to be valuable in evaluating the toxic effects of pesticide spraying in soils and the potential risks for aquatic compartments. Environ. Toxicol. Chem. 2012;31:437-445. (C) 2011 SETAC
Resumo:
Animal production is one of the most expressive sectors of Brazilian agro-economy. Although antibiotics are routinely used in this activity, their occurrence, fate, and potential impacts to the local environment are largely unknown. This research evaluated sorption-desorption and occurrence of four commonly used fluoroquinolones (norfloxacin, ciprofloxacin, danofloxacin, and enrofloxacin) in poultry litter and soil samples from Sao Paulo State, Brazil. The sorption-desorption studies involved batch equilibration technique and followed the OECD guideline for pesticides. All compounds were analyzed by HPLC, using fluorescence detector. Fluoroquinolones' sorption potential to the poultry litters (K-d <= 65 L kg(-1)) was lower than to the soil (K-d similar to 40,000 L kg(-1)), but was always high (>= 69% of applied amount) indicating a higher specificity of fluoroquinolones interaction with soils. The addition of poultry litter (5%) to the soil had not affected sorption or desorption of these compounds. Desorption was negligible in the soil (<= 0.5% of sorbed amount), but not in the poultry litters (up to 42% of sorbed amount). Fluoroquinolones' mean concentrations found in the poultry litters (1.37 to 6.68 mg kg(-1)) and soils (22.93 mu g kg(-1)) were compatible to those found elsewhere (Austria, China, and Turkey). Enrofloxacin was the most often detected compound (30% of poultry litters and 27% of soils) at the highest mean concentrations (6.68 mg kg(-1) for poultry litters and 22.93 mu g kg(-1) for soils). These results show that antibiotics are routinely used in poultry production and might represent one potential source of pollution to the environment that has been largely ignored and should be further investigated in Brazil. (C) 2012 Elsevier B.V. All rights reserved.