15 resultados para Treadmill Exercise

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The plastic brain responses generated by the training with acrobatic exercise (AE) and with treadmill exercise (TE) may be different. We evaluated the protein expression of synapsin I (SYS), synaptophysin (SYP), microtubule-associated protein 2 (MAP2) and neurofilaments (NF) by immunohistochemistry and Western blotting in the motor cortex, striatum and cerebellum of rats subjected to TE and AE. Young adult male Wistar rats were divided into 3 groups: sedentary (Sed) (n=15), TE (n=20) and AE (n=20). The rats were trained 3 days/week for 4 weeks on a treadmill at 0.6 km/h, 40 min/day (TE), or moved through a circuit of obstacles 5 times/day (AE). The rats from the TE group exhibited a significant increase of SYS and SYP in the motor cortex, of NF68, SYS and SYP in the striatum, and of MAP2, NF and SYS in the cerebellum, whereas NF was decreased in the motor cortex and the molecular layer of the cerebellar cortex. On the other hand, the rats from the AE group showed a significant increase of MAP2 and SYP in the motor cortex, of all four proteins in the striatum, and of SYS in the cerebellum. In conclusion, AE induced changes in the expression of synaptic and structural proteins mainly in the motor cortex and striatum, which may underlie part of the learning of complex motor tasks. TE, on the other hand, promoted more robust changes of structural proteins in all three regions, especially in the cerebellum, which is involved in learned and automatic tasks. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: High fructose consumption contributes to the incidence of metabolic syndrome and, consequently, to cardiovascular outcomes. We investigated whether exercise training prevents high fructose diet-induced metabolic and cardiac morphofunctional alterations. METHODS: Wistar rats receiving fructose overload (F) in drinking water (100 g/l) were concomitantly trained on a treadmill (FT) for 10 weeks or kept sedentary. These rats were compared with a control group (C). Obesity was evaluated by the Lee index, and glycemia and insulin tolerance tests constituted the metabolic evaluation. Blood pressure was measured directly (Windaq, 2 kHz), and echocardiography was performed to determine left ventricular morphology and function. Statistical significance was determined by one-way ANOVA, with significance set at p<0.05. RESULTS: Fructose overload induced a metabolic syndrome state, as confirmed by insulin resistance (F: 3.6 +/- 0.2 vs. C: 4.5 +/- 0.2 mg/dl/min), hypertension (mean blood pressure, F: 118 +/- 3 vs. C: 104 +/- 4 mmHg) and obesity (F: 0.31 +/- 0.001 vs. C: 0.29 +/- 0.001 g/mm). Interestingly, fructose overload rats also exhibited diastolic dysfunction. Exercise training performed during the period of high fructose intake eliminated all of these derangements. The improvements in metabolic parameters were correlated with the maintenance of diastolic function. CONCLUSION: The role of exercise training in the prevention of metabolic and hemodynamic parameter alterations is of great importance in decreasing the cardiac morbidity and mortality related to metabolic syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the present study was to investigate the effects of an acute aerobic exercise on arterial pressure (AP), heart rate (HR), and baroreflex sensitivity (BRS) in STZ-induced diabetic rats. Male Wistar rats were divided into control (n = 8) and diabetic (n = 8) groups. AP, HR, and BRS, which were measured by tachycardic and bradycardic (BR) responses to AP changes, were evaluated at rest (R) and postexercise session (PE) on a treadmill. At rest, STZ diabetes induced AP and HR reductions, associated with BR impairment. Attenuation in resting diabetes-induced AP (R: 103 +/- 2 versus PE: 111 +/- 3 mmHg) and HR (R: 290 +/- 7 versus PE:328 +/- 10 bpm) reductions and BR dysfunction (R: -0.70 +/- 0.06 versus PE:-1.21 +/- 0.09 bpm/mmHg) was observed in the postexercise period. In conclusion, the hemodynamic and arterial baro-mediated control of circulation improvement in the postexercise period reinforces the role of exercise in the management of cardiovascular risk in diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During exercise, intense brain activity orchestrates an increase in muscle tension. Additionally, there is an increase in cardiac output and ventilation to compensate the increased metabolic demand of muscle activity and to facilitate the removal of CO2 from and the delivery of O-2 to tissues. Here we tested the hypothesis that a subset of pontomedullary and hypothalamic neurons could be activated during dynamic acute exercise. Male Wistar rats (250-350 g) were divided into an exercise group (n = 12) that ran on a treadmill and a no-exercise group (n = 7). Immunohistochemistry of pontomedullary and hypothalamic sections to identify activation (c-Fos expression) of cardiorespiratory areas showed that the no-exercise rats exhibited minimal Fos expression. In contrast, there was intense activation of the nucleus of the solitary tract, the ventrolateral medulla (including the presumed central chemoreceptor neurons in the retrotrapezoid/parafacial region), the lateral parabrachial nucleus, the Kolliker-Fuse region, the perifornical region, which includes the perifornical area and the lateral hypothalamus, the dorsal medial hypothalamus, and the paraventricular nucleus of the hypothalamus after running exercise. Additionally, we observed Fos immunoreactivity in catecholaminergic neurons within the ventrolateral medulla (C1 region) without Fos expression in the A2, A5 and A7 neurons. In summary, we show for the first time that after acute exercise there is an intense activation of brain areas crucial for cardiorespiratory control. Possible involvement of the central command mechanism should be considered. Our results suggest whole brain-specific mobilization to correct and compensate the homeostatic changes produced by acute exercise. (c) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aerobic conditioning (AC) performed either during or after sensitization reduces allergic inflammation in mice; however, the effects of AC performed before and during allergic sensitization on airway inflammation are unknown. Mice were divided into Control, AC, OVA, and AC + OVA groups. Mice were trained in a treadmill followed by either ovalbumin (OVA) sensitization or saline administration. Peribronchial inflammation, OVA-specific IgE and IgG1 titers, the expression of Th1 and Th2 cytokines, and airway remodeling were evaluated, as well as the expression of Eotaxin, RANTES, ICAM-1, VCAM-1, TGF-beta and VEGF. Aerobic conditioning performed before and during allergic sensitization displayed an inhibitory effect on the OVA-induced migration of eosinophils and lymphocytes to the airways, a reduction of IgE and IgG1 titers and an inhibition of the expression of Th2 cytokines. The AC + OVA group also demonstrated reduced expression of ICAM-1, VCAM-1, RANTES, TGF-beta and VEGF, as well as decreased airway remodeling (p < 0.05). The effects of AC before and during the sensitization process inhibit allergic airway inflammation and reduce the production of Th2 cytokines and allergen-specific IgE and IgG1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

de Araujo CC, Silva JD, Samary CS, Guimaraes IH, Marques PS, Oliveira GP, do Carmo LGRR, Goldenberg RC, Bakker-Abreu I, Diaz BL, Rocha NN, Capelozzi VL, Pelosi P, Rocco PRM. Regular and moderate exercise before experimental sepsis reduces the risk of lung and distal organ injury. J Appl Physiol 112: 1206-1214, 2012. First published January 19, 2012; doi:10.1152/japplphysiol.01061.2011.-Physical activity modulates inflammation and immune response in both normal and pathologic conditions. We investigated whether regular and moderate exercise before the induction of experimental sepsis reduces the risk of lung and distal organ injury and survival. One hundred twenty-four BALB/c mice were randomly assigned to two groups: sedentary (S) and trained (T). Animals in T group ran on a motorized treadmill, at moderate intensity, 5% grade, 30 min/day, 3 times a week for 8 wk. Cardiac adaptation to exercise was evaluated using echocardiography. Systolic volume and left ventricular mass were increased in T compared with S group. Both T and S groups were further randomized either to sepsis induced by cecal ligation and puncture surgery (CLP) or sham operation (control). After 24 h, lung mechanics and histology, the degree of cell apoptosis in lung, heart, kidney, liver, and small intestine villi, and interleukin (IL)-6, KC (IL-8 murine functional homolog), IL-1 beta, IL-10, and number of cells in bronchoalveolar lavage (BALF) and peritoneal lavage (PLF) fluids as well as plasma were measured. In CLP, T compared with S groups showed: 1) improvement in survival; 2) reduced lung static elastance, alveolar collapse, collagen and elastic fiber content, number of neutrophils in BALF, PLF, and plasma, as well as lung and distal organ cell apoptosis; and 3) increased IL-10 in BALF and plasma, with reduced IL-6, KC, and IL-1 beta in PLF. In conclusion, regular and moderate exercise before the induction of sepsis reduced the risk of lung and distal organ damage, thus increasing survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bearing in mind that cancer cachexia is associated with chronic systemic inflammation and that endurance training has been adopted as a nonpharmacological anti-inflammatory strategy, we examined the effect of 8 weeks of moderate intensity exercise upon the balance of anti-and pro-inflammatory cytokines in 2 different depots of white adipose tissue in cachectic tumour-bearing (Walker-256 carcinosarcoma) rats. Animals were assigned to a sedentary control (SC), sedentary tumour-bearing (ST), sedentary pair-fed (SPF) or exercise control (EC), exercise tumour-bearing (ET), and exercise pair-fed (EPF) group. Trained rats ran on a treadmill (60% VO(2)max) 60 min/day, 5 days/week, for 8 weeks. The retroperitoneal (RPAT) and mesenteric (MEAT) adipose pads were excised and the mRNA (RT-PCR) and protein (ELISA) expression of IL-1 beta, IL-6, TNF-alpha, and IL-10 were evaluated. The number of infiltrating monocytes in the adipose tissue was increased in cachectic rats. TNF-alpha mRNA in MEAT was increased in the cachectic animals (p < 0.05) in relation to SC. RPAT protein expression of all studied cytokines was increased in cachectic animals in relation to SC and SPF (p < 0.05). In this pad, IL-10/TNF-alpha ratio was reduced in the cachectic animals in comparison with SC (p < 0.05) indicating inflammation. Exercise training improved IL-10/TNF-alpha ratio and induced a reduction of the infiltrating monocytes both in MEAT and RPAT (p < 0.05), when compared with ST. We conclude that cachexia is associated with inflammation of white adipose tissue and that exercise training prevents this effect in the MEAT, and partially in RPAT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The aim of this study was to investigate the cardiometabolic effects of exercise training in ovariectomized hypertensive rats both submitted and not submitted to fructose overload. Methods: Spontaneously hypertensive ovariectomized rats were divided into sedentary and trained (THO) groups submitted to normal chow and sedentary and trained groups submitted to fructose overload (100 g/L in drinking water for 19 wk). Exercise training was performed on a treadmill (8 wk). Arterial pressure (AP) was directly recorded. Cardiovascular autonomic control was evaluated through pharmacological blockade (atropine and propranolol) and in the time and frequency domains by spectral analysis. Results: The THO group presented reduced AP (approximately 16 mm Hg) and enhanced cardiac vagal tonus (approximately 49%) and baroreflex sensitivity (approximately 43%) compared with the sedentary hypertensive ovariectomized group. Exercise training attenuated metabolic impairment, resting tachycardia, cardiac and vascular sympathetic increases, and baroreflex sensitivity decrease induced by fructose overload in hypertensive rats. However, the trained hypertensive ovariectomized group submitted to fructose overload presented higher AP (approximately 32 mm Hg), associated with baroreflex sensitivity (approximately 69%) and parasympathetic dysfunctions compared with the THO group. Conclusions: These data suggest that the metabolic disorders in hypertensive rats after ovarian hormone deprivation could blunt and/or attenuate some exercise training benefits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intense physical activity results in a substantial volume of stress and hence a significant probability of immunosuppression in athletes, with milk proteins being, perhaps, the most recommended protein supplements. Consumption of a probiotic cheese can attenuate immune suppression induced by exhausting exercise in rats. A popular Brazilian fresh cheese (Minas Frescal cheese) containing Lactobacillus acidophilus LA14 and Bifidobacterium longum BL05 was fed for 2 wk to adult Wistar rats, which then were brought to exhaustion on the treadmill. Two hours after exhaustion, the rats were killed and material was collected for the determination of serum uric acid, total and high-density lipoprotein cholesterol fraction, total protein, triacylglycerols, aspartate aminotransferase, alanine aminotransferase, creatine kinase, and blood cell (monocyte, lymphocyte, neutrophil, and leukocyte) counts. Exercise was efficient in reducing lymphocyte counts, irrespective of the type of ingested cheese, but the decrease in the group fed the probiotic cheese was 22% compared with 48% in the animals fed regular cheese. Monocyte counts were unaltered in the rats fed probiotic cheese compared with a significant decrease in the rats fed the regular cheese. Most importantly, ingestion of the probiotic cheese resulted in a >100% increase in serum high-density lipoprotein cholesterol and a 50% decrease in triacylglycerols. We conclude that probiotic Minas Reseal cheese may be a viable alternative to enhance the immune system and could be used to prevent infections, particularly those related to the physical overexertion of athletes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several studies have demonstrated that one exercise session (ES) on a cycloergometer or ergometric treadmill causes a reduction in blood pressure (BP). However, there are few similar studies on walking, which is the exercise modality most available to the elderly. We investigated the immediate and 24-h effects of walking on BP in independent, community-living elderly individuals. Volunteers participated in a single ES and resting control session (CS). Before and after each session, BP was measured by auscultatory and oscillometric methods. After each session, 24-h ambulatory blood pressure monitoring was conducted. An accelerometer was installed 48 h before the sessions and left in place for 5 days. The mean volunteer age was 67.7 +/- 3.5 years; 11 were hypertensive patients under treatment, and 12 were normotensive. In the total sample, there were immediate 14mm Hg and 12 mm Hg reductions in systolic BP (SBP) after the ES according to the auscultatory and oscillometric methods, respectively. Diastolic BP (DBP) was reduced by 4 mm Hg after the ES according to both methods. SBP during wakefulness and sleep and DBP during wakefulness were lower after the ES than after the CS (P<0.01), when wakefulness and sleep were determined individually (variable-time pattern) using data from the activity monitors and provided by the volunteers. The variable-time pattern was more effective in detecting reductions in BP than the fixed-time pattern. Hypertension Research (2012) 35, 457-462; doi: 10.1038/hr.2011.227; published online 9 February 2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work was to evaluate the effects of low-level laser therapy (LLLT) on exercise performance, oxidative stress, and muscle status in humans. A randomized double-blind placebo-controlled crossover trial was performed with 22 untrained male volunteers. LLLT (810 nm, 200 mW, 30 J in each site, 30 s of irradiation in each site) using a multi-diode cluster (with five spots - 6 J from each spot) at 12 sites of each lower limb (six in quadriceps, four in hamstrings, and two in gastrocnemius) was performed 5 min before a standardized progressive-intensity running protocol on a motor-drive treadmill until exhaustion. We analyzed exercise performance (VO(2 max), time to exhaustion, aerobic threshold and anaerobic threshold), levels of oxidative damage to lipids and proteins, the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), and the markers of muscle damage creatine kinase (CK) and lactate dehydrogenase (LDH). Compared to placebo, active LLLT significantly increased exercise performance (VO(2 max) p = 0.01; time to exhaustion, p = 0.04) without changing the aerobic and anaerobic thresholds. LLLT also decreased post-exercise lipid (p = 0.0001) and protein (p = 0.0230) damages, as well as the activities of SOD (p = 0.0034), CK (p = 0.0001) and LDH (p = 0.0001) enzymes. LLLT application was not able to modulate CAT activity. The use of LLLT before progressive-intensity running exercise increases exercise performance, decreases exercise-induced oxidative stress and muscle damage, suggesting that the modulation of the redox system by LLLT could be related to the delay in skeletal muscle fatigue observed after the use of LLLT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background The aim of the present study was to investigate the relationship between speed during maximum exercise test (ET) and oxygen consumption (VO2) in control and STZ-diabetic rats, in order to provide a useful method to determine exercise capacity and prescription in researches involving STZ-diabetic rats. Methods Male Wistar rats were divided into two groups: control (CG, n = 10) and diabetic (DG, n = 8). The animals were submitted to ET on treadmill with simultaneous gas analysis through open respirometry system. ET and VO2 were assessed 60 days after diabetes induction (STZ, 50 mg/Kg). Results VO2 maximum was reduced in STZ-diabetic rats (72.5 ± 1 mL/Kg/min-1) compared to CG rats (81.1 ± 1 mL/Kg/min-1). There were positive correlations between ET speed and VO2 (r = 0.87 for CG and r = 0.8 for DG), as well as between ET speed and VO2 reserve (r = 0.77 for CG and r = 0.7 for DG). Positive correlations were also obtained between measured VO2 and VO2 predicted values (r = 0.81 for CG and r = 0.75 for DG) by linear regression equations to CG (VO2 = 1.54 * ET speed + 52.34) and DG (VO2 = 1.16 * ET speed + 51.99). Moreover, we observed that 60% of ET speed corresponded to 72 and 75% of VO2 reserve for CG and DG, respectively. The maximum ET speed was also correlated with VO2 maximum for both groups (CG: r = 0.7 and DG: r = 0.7). Conclusion These results suggest that: a) VO2 and VO2 reserve can be estimated using linear regression equations obtained from correlations with ET speed for each studied group; b) exercise training can be prescribed based on ET in control and diabetic-STZ rats; c) physical capacity can be determined by ET. Therefore, ET, which involves a relatively simple methodology and low cost, can be used as an indicator of cardio-respiratory capacity in future studies that investigate the physiological effect of acute or chronic exercise in control and STZ-diabetic male rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The increase in fructose consumption is paralleled by a higher incidence of metabolic syndrome, and consequently, cardiovascular disease mortality. We examined the effects of 8 weeks of low intensity exercise training (LET) on metabolic, hemodynamic, ventricular and vascular morphological changes induced by fructose drinking in male rats. Methods Male Wistar rats were divided into (n = 8 each) control (C), sedentary fructose (F) and ET fructose (FT) groups. Fructose-drinking rats received D-fructose (100 g/l). FT rats were assigned to a treadmill training protocol at low intensity (30% of maximal running speed) during 1 h/day, 5 days/week for 8 weeks. Measurements of triglyceride concentrations, white adipose tissue (WAT) and glycemia were carried out together with insulin tolerance test to evaluate metabolic profile. Arterial pressure (AP) signals were directly recorded. Baroreflex sensitivity (BS) was evaluated by the tachycardic and bradycardic responses. Right atria, left ventricle (LV) and ascending aorta were prepared to morphoquantitative analysis. Results LET reduced WAT (−37.7%), triglyceride levels (−33%), systolic AP (−6%), heart weight/body weight (−20.5%), LV (−36%) and aortic (−76%) collagen fibers, aortic intima-media thickness and circumferential wall tension in FT when compared to F rats. Additionally, FT group presented improve of BS, numerical density of atrial natriuretic peptide granules (+42%) and LV capillaries (+25%), as well as the number of elastic lamellae in aorta compared with F group. Conclusions Our data suggest that LET, a widely recommended practice, seems to be particularly effective for preventing metabolic, hemodynamic and morphological disorders triggered by MS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All of the adaptations acquired through physical training are reversible with inactivity. Although significant reductions in maximal oxygen uptake (VO2max) can be observed within 2 to 4 wk of detraining, the consequences of detraining on the physiology of adipose tissue are poorly known. Our aim was therefore to investigate the effects of discontinuing training (physical detraining) on the metabolism and adipocyte cellularity of rat periepididymal (PE) adipose tissue. Male Wistar rats, aged 6 wk, were divided into three groups and studied for 12 wk under the following conditions: 1) trained (T) throughout the period; 2) detrained (D), trained during the first 8 wk and detrained during the remaining 4 wk; and 3) age-matched sedentary (S). Training consisted of treadmill running sessions (1 h/day, 5 days/wk, 50–60%VO2max). The PE adipocyte size analysis revealed significant differences between the groups. The adipocyte cross-sectional area (in µm2) was significantly larger in D than in the T and S groups (3,474 ± 68.8; 1,945.7 ± 45.6; 2,492.4 ± 49.08, respectively, P < 0.05). Compared with T, the isolated adipose cells (of the D rats) showed a 48% increase in the ability to perform lipogenesis (both basal and maximally insulin-stimulated) and isoproterenol-stimulated lipolysis. No changes were observed with respect to unstimulated lipolysis. A 15% reduction in the proportion of apoptotic adipocytes was observed in groups T and D compared with group S. The gene expression levels of adiponectin and PPAR-gamma were upregulated by factors of 3 and 2 in D vs. S, respectively. PREF-1 gene expression was 3-fold higher in T vs. S. From these results, we hypothesize that adipogenesis was stimulated in group D and accompanied by significant adipocyte hypertrophy and an increase in the lipogenic capacity of the adipocytes. The occurrence of apoptotic nuclei in PE fat cells was reduced in the D and T rats; these results raise the possibility that the adipose tissue changes after detraining are obesogenic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: We evaluated the effects of aerobic exercise training without dietary changes on cardiovascular and metabolic variables and on the expression of glucose transporter Type 4 in rats with metabolic syndrome. METHODS: Twenty male spontaneously hypertensive rats received monosodium glutamate during the neonatal period. The animals were allocated to the following groups: MS (sedentary metabolic syndrome), MS-T (trained on a treadmill for 1 hour/day, 5 days/week for 10 weeks), H (sedentary spontaneously hypertensive rats) and H-T (trained spontaneously hypertensive rats). The Lee index, blood pressure (tail-cuff system), insulin sensitivity (insulin tolerance test) and functional capacity were evaluated before and after 10 weeks of training. Glucose transporter Type 4 expression was analyzed using Western blotting. The data were compared using analysis of variance (ANOVA) (p<0.05). RESULTS: At baseline, the MS rats exhibited lower insulin sensitivity and increased Lee index compared with the H rats. Training decreased the body weight and Lee index of the MS rats (MS-T vs. MS), but not of the H rats (H-T vs. H). There were no differences in food intake between the groups. At the end of the experiments, the systolic blood pressure was lower in the two trained groups than in their sedentary controls. Whole-body insulin sensitivity increased in the trained groups. Glucose transporter Type 4 content increased in the heart, white adipose tissue and gastrocnemius muscle of the trained groups relative to their respective untrained groups. CONCLUSION: In conclusion, the present study shows that an isolated aerobic exercise training intervention is an efficient means of improving several components of metabolic syndrome, that is, training reduces obesity and hypertension and increases insulin sensitivity