2 resultados para Transesterification reactions
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The cyanobacterium Microcystis aeruginosa strain NPCD-1, isolated from sewage treatment plant and characterized as a non-microcystin producer by mass spectrometry and molecular analysis, was found to be a source of lipid when cultivated in ASM-1 medium at 25 degrees C under constant white fluorescent illumination (109 mu mol photon m(-2) s(-1)). In these conditions, biomass productivity of 46.92 +/- 3.84 mg L-1 day(-1) and lipid content of 28.10 +/- 1.47% were obtained. Quantitative analysis of fatty acid methyl esters demonstrated high concentration of saturated fatty acids (50%), palmitic (24.34%) and lauric (13.21%) acids being the major components. The remaining 50% constituting unsaturated fatty acids showed higher concentrations of oleic (26.88%) and linoleic (12.53%) acids. The feasibility to produce biodiesel from this cyanobacterial lipid was demonstrated by running enzymatic transesterification reactions catalyzed by Novozym (R) 435 and using palm oil as feedstock control. Batch experiments were carried out using tert-butanol and iso-octane as solvent. Results showed similarity on the main ethyl esters formed for both feedstocks. The highest ethyl ester concentration was related to palmitate and oleate esters followed by laurate and linoleate esters. However, both reaction rates and ester yields were dependent on the solvent tested. Total ethyl ester concentrations varied in the range of 44.24-67.84 wt%, corresponding to ester yields from 80 to 100%. Iso-octane provided better solubility and miscibility, with ester yield of 98.10% obtained at 48 h for reaction using the cyanobacterium lipid, while full conversion was achieved in 12 h for reaction carried out with palm oil. These results demonstrated that cyanobacterial lipids from M. aeruginosa NPCD-1 have interesting properties for biofuel production. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
The kinetic resolution of chiral beta-borylated carboxylic esters via lipase-catalyzed hydrolysis and transesterification reactions was studied. The enantioselective hydrolysis catalyzed by CAL-B furnished the beta-borylated carboxylic acid with reasonable enantiomeric excess (62% ee), while both methyl and ethyl beta-borylated carboxylic esters were recovered with excellent ee (>99%). Meanwhile, the transesterification reaction of beta-borylated carboxylic esters and several alcohols, catalyzed by CAL-B, only indicated a high selectivity when ethanol and methyl-(beta-pinacolylboronate)-butanoate were used as substrates, which gave ethyl-(beta-pinacolylboronate)-butanoate with >99% ee. (C) 2012 Elsevier Ltd. All rights reserved.