5 resultados para Training Evaluation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
OBJECTIVE: High fructose consumption contributes to the incidence of metabolic syndrome and, consequently, to cardiovascular outcomes. We investigated whether exercise training prevents high fructose diet-induced metabolic and cardiac morphofunctional alterations. METHODS: Wistar rats receiving fructose overload (F) in drinking water (100 g/l) were concomitantly trained on a treadmill (FT) for 10 weeks or kept sedentary. These rats were compared with a control group (C). Obesity was evaluated by the Lee index, and glycemia and insulin tolerance tests constituted the metabolic evaluation. Blood pressure was measured directly (Windaq, 2 kHz), and echocardiography was performed to determine left ventricular morphology and function. Statistical significance was determined by one-way ANOVA, with significance set at p<0.05. RESULTS: Fructose overload induced a metabolic syndrome state, as confirmed by insulin resistance (F: 3.6 +/- 0.2 vs. C: 4.5 +/- 0.2 mg/dl/min), hypertension (mean blood pressure, F: 118 +/- 3 vs. C: 104 +/- 4 mmHg) and obesity (F: 0.31 +/- 0.001 vs. C: 0.29 +/- 0.001 g/mm). Interestingly, fructose overload rats also exhibited diastolic dysfunction. Exercise training performed during the period of high fructose intake eliminated all of these derangements. The improvements in metabolic parameters were correlated with the maintenance of diastolic function. CONCLUSION: The role of exercise training in the prevention of metabolic and hemodynamic parameter alterations is of great importance in decreasing the cardiac morbidity and mortality related to metabolic syndrome.
Resumo:
Background: Heart failure (HF) is known to lead to skeletal muscle atrophy and dysfunction. However, intracellular mechanisms underlying HF-induced myopathy are not fully understood. We hypothesized that HF would increase oxidative stress and ubiquitin-proteasome system (UPS) activation in skeletal muscle of sympathetic hyperactivity mouse model. We also tested the hypothesis that aerobic exercise training (AET) would reestablish UPS activation in mice and human HF. Methods/Principal Findings: Time-course evaluation of plantaris muscle cross-sectional area, lipid hydroperoxidation, protein carbonylation and chymotrypsin-like proteasome activity was performed in a mouse model of sympathetic hyperactivity-induced HF. At the 7th month of age, HF mice displayed skeletal muscle atrophy, increased oxidative stress and UPS overactivation. Moderate-intensity AET restored lipid hydroperoxides and carbonylated protein levels paralleled by reduced E3 ligases mRNA levels, and reestablished chymotrypsin-like proteasome activity and plantaris trophicity. In human HF (patients randomized to sedentary or moderate-intensity AET protocol), skeletal muscle chymotrypsin-like proteasome activity was also increased and AET restored it to healthy control subjects' levels. Conclusions: Collectively, our data provide evidence that AET effectively counteracts redox imbalance and UPS overactivation, preventing skeletal myopathy and exercise intolerance in sympathetic hyperactivity-induced HF in mice. Of particular interest, AET attenuates skeletal muscle proteasome activity paralleled by improved aerobic capacity in HF patients, which is not achieved by drug treatment itself. Altogether these findings strengthen the clinical relevance of AET in the treatment of HF.
Resumo:
Background: In the Global postural re-education (GPR) evaluation, posture alterations are associated with anterior or posterior muscular chain impairments. Our goal was to assess the reliability of the GPR muscular chain evaluation. Methods: Design: Inter-rater reliability study. Fifty physical therapists (PTs) and two experts trained in GPR assessed the standing posture from photographs of five youths with idiopathic scoliosis using a posture analysis grid with 23 posture indices (PI). The PTs and experts indicated the muscular chain associated with posture alterations. The PTs were also divided into three groups according to their experience in GPR. Experts' results (after consensus) were used to verify agreement between PTs and experts for muscular chain and posture assessments. We used Kappa coefficients (K) and the percentage of agreement (%A) to assess inter-rater reliability and intra-class coefficients (ICC) for determining agreement between PTs and experts. Results: For the muscular chain evaluation, reliability was moderate to substantial for 12 PI for the PTs (% A: 56 to 82; K: 0.42 to 0.76) and perfect for 19 PI for the experts. For posture assessment, reliability was moderate to substantial for 12 PI for the PTs (% A > 60%; K: 0.42 to 0.75) and moderate to perfect for 18 PI for the experts (% A: 80 to 100; K: 0.55 to 1.00). The agreement between PTs and experts was good for most muscular chain evaluations (18 PI; ICC: 0.82 to 0.99) and PI (19 PI; ICC: 0.78 to 1.00). Conclusions: The GPR muscular chain evaluation has good reliability for most posture indices. GPR evaluation should help guide physical therapists in targeting affected muscles for treatment of abnormal posture patterns.
Resumo:
PURPOSE: Acute pain occurs in over 50% of hospitalized children. The accuracy of this diagnosis has been underexplored in the literature, as has the role of training to implement pain assessment. This study analyzed the accuracy of acute pain diagnoses after the implementation of a systematic evaluation of pain (study intervention). METHOD: The sample was divided into: pre- and postintervention. The Nursing Diagnosis Accuracy Scale, which scores accuracy as null, low, moderate, or high, was used. RESULTS: In the postimplementation, acute pain was diagnosed more often. However, accuracy only improved in the moderate category. CONCLUSION: Diagnosis of acute pain increased in the postimplementation period, but accuracy did not. IMPLICATIONS: The development of strategies for improvement of diagnostic accuracy is warranted.
Resumo:
Purpose. To use a randomized design to evaluate the effectiveness of voice training programs for telemarketers via multidimensional analysis. Methods. Forty-eight telemarketers were randomly assigned to two groups: voice training group (n = 14) who underwent training over an 8-week period and a nontraining control group (n = 34). Before and after training, recordings of the sustained vowel /epsilon/ and connected were collected for acoustic and perceptual analyses. Results. Based on pre- and posttraining comparisons, the voice training group presented with a significant reduction in percent jitter (P = 0.044). No other significant differences were observed, and inter-rater reliability varied from poor to fair. Conclusions. These findings suggest that voice training improved a single acoustic dimension, but do not change perceptual dimension of telemarketers' voices.