8 resultados para Toxicity tests
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Explosives industries are a source of toxic discharge. The aim of this study was to compare organisms sensitivity (Daphnia similis, Danio rerio, Escherichia coli and Pseudomonas putida) in detecting acute toxicity in wastewater from two explosives, 2,4,6-TNT (TNT) and nitrocellulose. The samples were collected from an explosives company in the Paraiba Valley, So Paulo, Brazil. The effluents from TNT and nitrocellulose production were very toxic for tested organisms. Statistical tests indicated that D. similis and D. rerio were the most sensitive organisms for toxicity detection in effluents from 2,4,6-TNT and nitrocellulose production. The P. putida bacteria was the organism considered the least sensitive in indicating toxicity in effluents from nitrocellulose.
Resumo:
An environmental impact study was conducted to determine the Piracicamirim's creek water quality in order to assess the influence of effluents from a sugar industry in this water body. For this, toxicity tests were performed with a water sample upstream and downstream the industry using the microcrustaceans Daphnia magna, Ceriodaphnia dubia and Ceriodaphnia silvestrii as test organisms, as well as physical and chemical analysis of water. Results showed that physical and chemical parameters did not change during the sampling period, except for the dissolved oxygen. No toxicity was observed for D. magna and reproduction of C. dubia and C. silvestrii in both sampling points. Thus, the industry was not negatively impacting the quality of this water body.
Resumo:
An environmental impact study was conducted to determine the Piracicamirim's creek water quality in order to assess the influence of effluents from a sugar industry in this water body. For this, toxicity tests were performed with a water sample upstream and downstream the industry using the microcrustaceans Daphnia magna, Ceriodaphnia dubia and Ceriodaphnia silvestrii as test organisms, as well as physical and chemical analysis of water. Results showed that physical and chemical parameters did not change during the sampling period, except for the dissolved oxygen. No toxicity was observed for D. magna and reproduction of C. dubia and C. silvestrii in both sampling points. Thus, the industry was not negatively impacting the quality of this water body.
Resumo:
Abamectin is used as an acaricide and insecticide for fruits, vegetables and ornamental plants, as well as a parasiticide for animals. One of the major problems of applying pesticides to crops is the likelihood of contaminating aquatic ecosystems by drift or runoff. Therefore, toxicity tests in the laboratory are important tools to predict the effects of chemical substances in aquatic ecosystems. The aim of this study was to assess the potential hazards of abamectin to the freshwater biota and consequently the possible losses of ecological services in contaminated water bodies. For this purpose, we identified the toxicity of abamectin on daphnids, insects and fish. Abamectin was highly toxic, with an EC50 48 h for Daphnia similis of 5.1 ng L-1, LC50 96 h for Chironomus xanthus of 2.67 mu g L-1 and LC50 48 h for Danio rerio of 33 mu g L-1. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The present study investigates the use of solar heterogeneous photocatalyis (TiO2) for the destruction of [D-Leu]-Microcystin-LR, powerful toxin of widespread occurrence within cyanobacteria blooms. We extracted [D-Leu]-Microcystin-LR from a culture of Microcystis spp. and used a flat plate glass reactor coated with TiO2 (Degussa, P25) for the degradation studies. The irradiance was measured during the experiments with the aid of a spectroradiometer. After the degradation experiments, toxin concentrations were determined by HPLC and mineralization by TOC analyses. Acute and chronic toxicities were, quantified using mice and phosphatase inhibition in vitro assays, respectively. According to the performed experiments, 150 min were necessary to reduce the toxin concentration to the WHO's guideline for drinking water (from 10 to 1 mu g L-1) and to mineralize 90% of the initial carbon content. Another important finding is that solar heterogeneous photocatalysis was a destructive process indeed, not only for the toxin, but also for the other extract components and degradation products generated. Moreover, toxicity tests using mice have shown that the acute effect caused by the initial sample was removed. However, tests using the phosphatase enzyme indicated that it may be formed products capable of inducing chronic effects on mammals. The performed experiments indicate the feasibility of using solar heterogeneous photocatalysis for treating contaminated water with [D-Leu]-Microcystin-LR, not only due to its destruction, but also to the significant removal of organic matter and acute toxicity that can be achieved. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The main objective of this study was to perform laboratory experiments on calcium nitrate addition to sediments of a tropical eutrophic urban reservoir (Ibirite reservoir, SE Brazil) to immobilize the reactive soluble phosphorus (RSP) and to evaluate possible geochemical changes and toxic effects caused by this treatment. Reductions of 75 and 89% in the concentration of RSP were observed in the water column and interstitial water, respectively, after 145 days of nitrate addition. The nitrate application increased the rate of autotrophic denitrification, causing a consumption of 98% of the added nitrate and oxidation of 99% of the acid volatile sulfide. As a consequence, there were increases in the sulfate and iron (II) concentrations in the sediment interstitial water and water column, as well as changes in the copper speciation in the sediments. Toxicity tests initially indicated that the high concentrations of nitrate and nitrite in the sediment interstitial water (up to 2300 mg L-1 and 260 mg L-1, respectively) were the major cause of mortality of Ceriodaphnia silvestrii and Chironomus xanthus. However, at the end of the experiment, the sediment toxicity was completely removed and a reduction in the 48 h-EC50 of the water was also observed. Based on these results we can say that calcium nitrate treatment proved to be a valuable tool in remediation of eutrophic aquatic ecosystems leading to conditions that can support a great diversity of organisms after a restoration period. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to compare the in vitro cytotoxicity of white mineral trioxide aggregate (MTA), MTA Fillapex® and Portland cement (PC) on human cultured periodontal ligament fibroblasts. Periodontal ligament fibroblast culture was established and the cells were used for cytotoxic tests after the fourth passage. Cell density was set at 1.25 X10 4 cells/well in 96-well plates. Endodontic material extracts were prepared by placing sealer/cement specimens (5X3mm) in 1mL of culture medium for 72 h. The extracts were then serially two-fold diluted and inserted into the cell-seeded wells for 24, 48 and 72 h. MTT assay was employed for analysis of cell viability. Cell supernatants were tested for nitric oxide using the Griess reagent system. MTA presented cytotoxic effect in undiluted extracts at 24 and 72 h. MTA Fillapex® presented the highest cytotoxic levels with important cell viability reduction for pure extracts and at ½ and ¼ dilutions. In this study, PC did not induce alterations in fibroblast viability. Nitric oxide was detected in extract-treated cell supernatants and also in the extracts only, suggesting presence of nitrite in the soluble content of the tested materials. In the present study, MTA Fillapex displayed the highest cytotoxic effect on periodontal ligament fibroblasts followed by white MTA and PC.
Resumo:
Obtaining ecotoxicological data on pesticides in tropical regions is imperative for performing more realistic risk analysis, and avoidance tests have been proposed as a useful, fast and cost-effective tool. Therefore, the present study aimed to evaluate the avoidance behavior of Eisenia andrei to a formulated product, Vertimec(A (R)) 18 EC (a.i abamectin), in tests performed on a reference tropical artificial soil (TAS), to derive ecotoxicological data on tropical conditions, and a natural soil (NS), simulating crop field conditions. In TAS tests an adaptation of the substrate recommended by OECD and ISO protocols was used, with residues of coconut fiber as a source of organic matter. Concentrations of the pesticide on TAS test ranged from 0 to 7 mg abamectin/kg (dry weight-d.w.). In NS tests, earthworms were exposed to samples of soils sprayed in situ with: 0.9 L of Vertimec(A (R)) 18 EC/ha (RD); twice as much this dosage (2RD); and distilled water (Control), respectively, and to 2RD: control dilutions (12.5, 25, 50, 75%). All tests were performed under 25 +/- A 2A degrees C, to simulate tropical conditions, and a 12hL:12hD photoperiod. The organisms avoided contaminated TAS for an EC50,48h = 3.918 mg/kg soil d.w., LOEC = 1.75 mg/kg soil d.w. and NOEC = 0.85 mg/kg soil d.w. No significant avoidance response occurred for any NS test. Abamectin concentrations in NS were rather lower than EC50, 48h and LOEC determined in TAS tests. The results obtained contribute to overcome a lack of ecotoxicological data on pesticides under tropical conditions, but more tests with different soil invertebrates are needed to improve pesticides risk analysis.