8 resultados para Thomas in Love
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Background: Heavy-flavor production in p + p collisions is a good test of perturbative-quantum-chromodynamics (pQCD) calculations. Modification of heavy-flavor production in heavy-ion collisions relative to binary-collision scaling from p + p results, quantified with the nuclear-modification factor (R-AA), provides information on both cold-and hot-nuclear-matter effects. Midrapidity heavy-flavor R-AA measurements at the Relativistic Heavy Ion Collider have challenged parton-energy-loss models and resulted in upper limits on the viscosity-entropy ratio that are near the quantum lower bound. Such measurements have not been made in the forward-rapidity region. Purpose: Determine transverse-momentum (p(T)) spectra and the corresponding R-AA for muons from heavy-flavor meson decay in p + p and Cu + Cu collisions at root s(NN) = 200 GeV and y = 1.65. Method: Results are obtained using the semileptonic decay of heavy-flavor mesons into negative muons. The PHENIX muon-arm spectrometers measure the p(T) spectra of inclusive muon candidates. Backgrounds, primarily due to light hadrons, are determined with a Monte Carlo calculation using a set of input hadron distributions tuned to match measured-hadron distributions in the same detector and statistically subtracted. Results: The charm-production cross section in p + p collisions at root s = 200 GeV, integrated over p(T) and in the rapidity range 1.4 < y < 1.9, is found to be d(sigma e (e) over bar)/dy = 0.139 +/- 0.029 (stat)(-0.058)(+0.051) (syst) mb. This result is consistent with a perturbative fixed-order-plus-next-to-leading-log calculation within scale uncertainties and is also consistent with expectations based on the corresponding midrapidity charm-production cross section measured by PHENIX. The R-AA for heavy-flavor muons in Cu + Cu collisions is measured in three centrality bins for 1 < p(T) < 4 GeV/c. Suppression relative to binary-collision scaling (R-AA < 1) increases with centrality. Conclusions: Within experimental and theoretical uncertainties, the measured charm yield in p + p collisions is consistent with state-of-the-art pQCD calculations. Suppression in central Cu + Cu collisions suggests the presence of significant cold-nuclear-matter effects and final-state energy loss.
Resumo:
We report on charmonium measurements [J/psi (1S), psi' (2S), and chi(c) (1P)] in p + p collisions at root s = 200 GeV. We find that the fraction of J/psi coming from the feed-down decay of psi' and chi(c) in the midrapidity region (vertical bar y vertical bar < 0: 35) is 9.6 +/- 2.4% and 32 +/- 9%, respectively. We also present the p(T) and rapidity dependencies of the J/psi yield measured via dielectron decay at midrapidity (vertical bar y vertical bar < 0.35) and via dimuon decay at forward rapidity (1.2 < vertical bar y vertical bar < 2.2). The statistical precision greatly exceeds that reported in our previous publication [Phys. Rev. Lett. 98, 232002 (2007)]. The new results are compared with other experiments and discussed in the context of current charmonium production models.
Resumo:
The second Fourier component v(2) of the azimuthal anisotropy with respect to the reaction plane is measured for direct photons at midrapidity and transverse momentum (p(T)) of 1-12 GeV/c in Au + Au collisions at root s(NN) = 200 GeV. Previous measurements of this quantity for hadrons with p(T) < 6 GeV/c indicate that the medium behaves like a nearly perfect fluid, while for p(T) > 6 GeV/c a reduced anisotropy is interpreted in terms of a path-length dependence for parton energy loss. In this measurement with the PHENIX detector at the Relativistic Heavy Ion Collider we find that for p(T) > 4 GeV/c the anisotropy for direct photons is consistent with zero, which is as expected if the dominant source of direct photons is initial hard scattering. However, in the p(T) < 4 GeV/c region dominated by thermal photons, we find a substantial direct-photon v(2) comparable to that of hadrons, whereas model calculations for thermal photons in this kinematic region underpredict the observed v(2).
Resumo:
The differential cross section for the production of direct photons in p + p collisions at root s = 200 GeV at midrapidity was measured in the PHENIX detector at the Relativistic Heavy Ion Collider. Inclusive direct photons were measured in the transverse momentum range from 5: 5-25 GeV/c, extending the range beyond previous measurements. Event structure was studied with an isolation criterion. Next-to-leading-order perturbative-quantum-chromodynamics calculations give a good description of the spectrum. When the cross section is expressed versus x(T), the PHENIX data are seen to be in agreement with measurements from other experiments at different center-of-mass energies.
Resumo:
The PHENIX experiment has measured electrons and positrons at midrapidity from the decays of hadrons containing charm and bottom quarks produced in d + Au and p + p collisions at root S-NN = 200 GeV in the transverse-momentum range 0.85 <= p(T)(e) <= 8.5 GeV/c. In central d + Au collisions, the nuclear modification factor R-dA at 1.5 < p(T) < 5 GeV/c displays evidence of enhancement of these electrons, relative to those produced in p + p collisions, and shows that the mass-dependent Cronin enhancement observed at the Relativistic Heavy Ion Collider extends to the heavy D meson family. A comparison with the neutral-pion data suggests that the difference in cold-nuclear-matter effects on light- and heavy-flavor mesons could contribute to the observed differences between the pi(0) and heavy-flavor-electron nuclear modification factors R-AA. DOI: 10.1103/PhysRevLett.109.242301
Resumo:
Unpolarized cross sections and double-helicity asymmetries of single-inclusive positive and negative charged hadrons at midrapidity from p + p collisions at root s = 62.4 GeV are presented. The PHENIX measurement of the cross sections for 1.0 < p(T) < 4.5 GeV/c are consistent with perturbative QCD calculations at next-to-leading order in the strong-coupling constant, alpha(s). Resummed pQCD calculations including terms with next-to-leading-log accuracy, yielding reduced theoretical uncertainties, also agree with the data. The double-helicity asymmetry, sensitive at leading order to the gluon polarization in a momentum-fraction range of 0.05 less than or similar to x(gluon) less than or similar to 0.2, is consistent with recent global parametrizations disfavoring large gluon polarization.
Resumo:
Measurements of the anisotropy parameter v(2) of identified hadrons (pions, kaons, and protons) as a function of centrality, transverse momentum p(T), and transverse kinetic energy KET at midrapidity (vertical bar eta vertical bar < 0.35) in Au + Au collisions at root s(N N) = 200 GeV are presented. Pions and protons are identified up to p(T) = 6 GeV/c, and kaons up to p(T) = 4 GeV/c, by combining information from time-of-flight and aerogel Cerenkov detectors in the PHENIX Experiment. The scaling of v(2) with the number of valence quarks (n(q)) has been studied in different centrality bins as a function of transverse momentum and transverse kinetic energy. A deviation from previously observed quark-number scaling is observed at large values of KET/n(q) in noncentral Au + Au collisions (20-60%), but this scaling remains valid in central collisions (0-10%).