10 resultados para Thermocline
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We studied the temporal and vertical variability in larvacean abundance and secondary production on a fixed station off southeast Brazil, from January 2007 to December 2008. Larvacean biomass was derived from length weight regressions, and growth rates were estimated from an empirical model. We identified eleven larvacean species. Oikopleura longicauda occurred throughout the studied period and was the most abundant species, followed by Oikopleura fusiformis. Fritillaria haplostoma, O. fusiformis and O. longicauda were found mainly above the thermocline, whereas Oikopleura dioica and Fritillaria pellucida preferred bottom layers. Higher abundance and biomass were observed in warmer months, when the water column was stratified as a result of the bottom intrusions of the cold and nutrient-rich South Atlantic Central Water. Secondary production mirrored the biomass seasonal pattern. Larvacean biomass equaled to less than 10% of copepod biomass during the same period, but larvacean production comprised on average 77% that of copepods, whereas the production of discarded houses and fecal pellets comprised up to 2800% of larvaceans secondary production. This confirms the potential significance of larvaceans in the carbon flux in tropical and subtropical coastal regions. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we use a coupled ocean-atmosphere model to investigate the impact of the interruption of Agulhas leakage of Indian ocean water on the tropical Atlantic, a region where strong coupled ocean-atmosphere interactions occur. The effect of a shut down of leakage of Indian ocean water is isolated from the effect of a collapse of the MOC. In our experiments, the ocean model is forced with boundary conditions in the southeastern corner of the domain that correspond to no interocean exchange of Indian ocean water into the Atlantic. The southern boundary condition is taken from the Levitus data and ensures an MOC in the Atlantic. Within this configuration, instead of warm and salty Indian ocean water temperature (cold) and salinity (fresh) anomalies of southern ocean origin propagate into the South Atlantic and eventually reach the equatorial region, mainly in the thermocline. This set up mimics the closure of the ""warm water path"" in favor of the ""cold water path"". As part of the atmospheric response, there is a northward shift of the intertropical convergence zone (ITCZ). The changes in trade winds lead to reduced Ekman pumping in the equatorial region. This leads to a freshening and warming of the surface waters along the equator. Especially in the Cold Tongue region, the cold and fresh subsurface anomalies do not reach the surface due to the reduced upwelling. The anomaly signals are transported by the equatorial undercurrent and spread away from the equator within the thermocline. Part of the anomaly eventually reaches the Tropical North Atlantic, where it affects the Guinea Dome. Surprisingly, the main effect at the surface is small on the equator and relatively large at the Guinea Dome. In the atmosphere, the northward shift of the ITCZ is associated with a band of negative precipitation anomalies and higher salinities over the Tropical South Atlantic. An important implication of these results is that the modified water characteristics due to a shut down of the Agulhas leakage remain largely unaffected when crossing the equatorial Atlantic and therefore can affect the deepwater formation in the North Atlantic. This supports the hypothesis that the Agulhas leakage is an important source region for climate change and decadal variability of the Atlantic.
Resumo:
Deep Chlorophyll Maximum (DCM) modifies the upper ocean heat capture distribution and thus impacts water column temperature and stratification, as well as biogeochemical processes. This energetical role of the DCM is assessed using a 1 m-resolution 1D physical-biogeochemical model of the upper ocean, using climatological forcing conditions of the Guinea Dome (GD). This zone has been chosen among others because a strong and shallow DCM is present all year round. The results show that the DCM warms the seasonal thermocline by +2 degrees C in September/October and causes an increase of heat transfer from below into the mixed layer (ML) by vertical diffusion and entrainment, leading to a ML warming of about 0.3 degrees C in October. In the permanent thermocline, temperature decreases by up to 2 degrees C. The result is a stratification increase of the water column by 0.3 degrees C m(-1) which improves the thermocline realism when compared with observations. At the same time, the heating associated with the DCM is responsible for an increase of nitrate (+300%, 0.024 mu M), chlorophyll (+50%, 0.02 mu g l(-1)) and primary production (+45%: 10 mg C m(-2) day(-1)) in the ML during the entrainment period of October. The considered concentrations are small but this mechanism could be potentially important to give a better explanation of why there is a significant amount of nitrate in the ML. The mechanisms associated with the DCM presence, no matter which temperature or biogeochemical tracers are concerned, are likely to occur in a wide range of tropical or subpolar regions; in these zones a pronounced DCM is present at least episodically at shallow or moderate depths. These results can be generalized to other thermal dome regions where relatively similar physical and biogeochemical structures are encountered. After testing different vertical resolutions (10 m, 5 m, 2.5 m, 1 m and 0.5 m), we show that using at least a 1 to vertical resolution model is mandatory to assess the energetical importance of the DCM.
Resumo:
The Rio de la Plata waters form a low salinity tongue that affects the circulation, stratification and the distributions of nutrients and biological species over a wide extent of the adjacent continental shelf. The plume of coastal waters presents a seasonal meridional displacement reaching lower latitudes (28,S) during austral winter and 32 degrees S during summer. Historical data suggests that the wind causes the alongshore shift, with southwesterly (SW) winds forcing the plume to lower latitudes in winter while summer dominant northeasterly (NE) winds force its southward retreat. To establish the connection between wind and outflow variations on the distribution of the coastal waters, we conducted two quasi-synoptic surveys in the region of Plata influence on the continental shelf and slope of southeastern South America, between Mar del Plata, Argentina and the northern coast of Santa Catarina, Brazil. We observed that: (A) SW winds dominating in winter force the northward spreading of the plume to low latitudes even during low river discharge periods; (B) NE winds displace the plume southward and spread the low salinity waters offshore over the entire width of the continental shelf east of the Plata estuary. The southward retreat of the plume in summer leads to a volume decrease of low salinity waters over the shelf. This volume is compensated by an increase of Tropical waters, which dominate the northern shelf. The subsurface transition between Subantarctic and Subtropical Shelf Waters, the Subtropical Shelf Front, and the subsurface water mass distribution, however, present minor seasonal variations. Along shore winds also influence the dynamics and water mass variations along the continental shelf area. In areas under the influence of river discharge, Subtropical Shelf Waters are kept away from the coastal region. When low salinity waters retreat southward, NE winds induce a coastal upwelling system near Santa Marta Cape. In summer, solar radiation promotes the establishment of a strong thermocline that increases buoyancy and further enhances the offshore displacement of low salinity waters under the action of NE winds. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Hydrographic data collected during surveys carried out in austral winter 2003 and summer 2004 are used to analyze the distributions of temperature (T) and salinity (S) over the continental shelf and slope of eastern South America between 27 degrees S and 39 degrees S. The water mass structure and the characteristics of the transition between subantarctic and subtropical shelf water (STSW), referred to as the subtropical shelf front (STSF), as revealed by the vertical structure of temperature and salinity are discussed. During both surveys, the front intensifies downward and extends southwestward from the near coastal zone at 33 degrees S to the shelf break at 36 degrees S. In austral winter subantarctic shelf water (SASW), derived from the northern Patagonia shelf, forms a vertically coherent cold wedge of low salinity waters that locally separate the outer shelf STSW from the fresher inner shelf Plata Plume Water (PPW) derived from the Rio de la Plata. Winter T-S diagrams and cross-shelf T and S distributions indicate that mixtures of PPW and tropical water only occur beyond the northernmost extent of pure SASW, and form STSW and an inverted thermocline characteristic of this region. In summer 2004, dilution of Tropical water (TW) occurs at two distinct levels: a warm near surface layer, associated to PPW-TW mixtures, similar to but significantly warmer than winter STSW, and a colder (T similar to 16 degrees C) salinity minimum layer at 40-50 m depth, created by SASW-STSW mixtures across the STSF. In winter, the salinity distribution controls the density structure creating a cross-shore density gradient, which prevents isopycnal mixing across the STSF. Temperature stratification in summer induces a sharp pycnocline providing cross-shelf isopycnal connections across the STSF. Cooling and freshening of the upper layer observed at stations collected along the western edge of the Brazil Current suggest offshore export of shelf waters. Low T and S filaments, evident along the shelf break in the winter data, suggest that submesoscale eddies may enhance the property exchange across the shelf break. These observations suggest that as the subsurface shelf waters converge at the STSF, they flow southward along the front and are expelled offshore, primarily along the front axis. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The influence of the meridional overturning circulation on tropical Atlantic climate and variability has been investigated using the atmosphere-ocean coupled model Speedy-MICOM (Miami Isopycnic Coordinate Ocean Model). In the ocean model MICOM the strength of the meridional overturning cell can be regulated by specifying the lateral boundary conditions. In case of a collapse of the basinwide meridional overturning cell the SST response in the Atlantic is characterized by a dipole with a cooling in the North Atlantic and a warming in the tropical and South Atlantic. The cooling in the North Atlantic is due to the decrease in the strength of the western boundary currents, which reduces the northward advection of heat. The warming in the tropical Atlantic is caused by a reduced ventilation of water originating from the South Atlantic. This effect is most prominent in the eastern tropical Atlantic during boreal summer when the mixed layer attains its minimum depth. As a consequence the seasonal cycle as well as the interannual variability in SST is reduced. The characteristics of the cold tongue mode are changed: the variability in the eastern equatorial region is strongly reduced and the largest variability is now in the Benguela, Angola region. Because of the deepening of the equatorial thermocline, variations in the thermocline depth in the eastern tropical Atlantic no longer significantly affect the mixed layer temperature. The gradient mode remains unaltered. The warming of the tropical Atlantic enhances and shifts the Hadley circulation. Together with the cooling in the North Atlantic, this increases the strength of the subtropical jet and the baroclinicity over the North Atlantic.
Resumo:
The paleoclimate version of the National Center for Atmospheric Research Community Climate System Model version 3 (NCAR-CCSM3) is used to analyze changes in the water formation rates in the Atlantic, Pacific, and Indian Oceans for the Last Glacial Maximum (LGM), mid-Holocene (MH) and pre-industrial (PI) control climate. During the MH, CCSM3 exhibits a north-south asymmetric response of intermediate water subduction changes in the Atlantic Ocean, with a reduction of 2 Sv in the North Atlantic and an increase of 2 Sv in the South Atlantic relative to PI. During the LGM, there is increased formation of intermediate water and a more stagnant deep ocean in the North Pacific. The production of North Atlantic Deep Water (NADW) is significantly weakened. The NADW is replaced in large extent by enhanced Antarctic Intermediate Water (AAIW), Glacial North Atlantic Intermediate Water (GNAIW), and also by an intensified of Antarctic Bottom Water (AABW), with the latter being a response to the enhanced salinity and ice formation around Antarctica. Most of the LGM intermediate/mode water is formed at 27.4 < sigma(theta) < 29.0 kg/m(3), while for the MH and PI most of the subduction transport occurs at 26.5 < sigma(theta) < 27.4 kg/m(3). The simulated LGM Southern Hemisphere winds are more intense by 0.2-0.4 dyne/cm(2). Consequently, increased Ekman transport drives the production of intermediate water (low salinity) at a larger rate and at higher densities when compared to the other climatic periods.
Resumo:
The Laje de Santos Marine State Park (LSMSP), located in southeastern Brazil, is the only marine park in Sao Paulo State. This conservation unit has been established as a protected area of high biological diversity. Despite its importance for the conservation of the marine biota, little is known about the park's seaweed flora. The objectives of this study were as follows: to furnish increased knowledge of the composition of the macroalgae in the Park area; to relate the area's macroalgal composition to the presence of an important water mass in the region, the South Atlantic Central Water (SACW); and to investigate the possible influence of the Port of Santos on the composition of the macroalgae of the LSMSP. This study registered 31 new records for the LSMSP, 11 for Sao Paulo State, four for Brazil, one for the western Atlantic and one for the South Atlantic Ocean, in addition to the possible occurrence of one new species of Osmundea (Rhodomelaceae) and one new genus belonging to Ceramiaceae. The taxonomic composition of the macroalgae had a direct correlation with the arrival of the SACW in the summer-fall season. The SACW generated a strong thermocline and increased the supply of nutrients in the water column. Hydrodynamic and dispersion modeling analyses suggested that the Port of Santos influenced the composition of the LSMSP phycoflora.
Resumo:
The supply of nutrients to the low-latitude thermocline is largely controlled by intermediate-depth waters formed at the surface in the high southern latitudes. Silicic acid is an essential macronutrient for diatoms, which are responsible for a significant portion of marine carbon export production. Changes in ocean circulation, such as those observed during the last deglaciation, would influence the nutrient composition of the thermocline and, therefore, the relative abundance of diatoms in the low latitudes. Here we present the first record of the silicic acid content of the Atlantic over the last glacial cycle. Our results show that at intermediate depths of the South Atlantic, the silicic acid concentration was the same at the Last Glacial Maximum (LGM) as it is today, overprinted by high silicic acid pulses that coincided with abrupt changes in ocean and atmospheric circulation during Heinrich Stadials and the Younger Dryas. We suggest these pulses were caused by changes in intermediate water formation resulting from shifts in the subpolar hydrological cycle, with fundamental implications for the nutrient supply to the Atlantic.
Resumo:
The Laje de Santos Marine State Park (LSMSP), located in southeastern Brazil, is the only marine park in São Paulo State. This conservation unit has been established as a protected area of high biological diversity. Despite its importance for the conservation of the marine biota, little is known about the park's seaweed flora. The objectives of this study were as follows: to furnish increased knowledge of the composition of the macroalgae in the Park area; to relate the area's macroalgal composition to the presence of an important water mass in the region, the South Atlantic Central Water (SACW); and to investigate the possible influence of the Port of Santos on the composition of the macroalgae of the LSMSP. This study registered 31 new records for the LSMSP, 11 for São Paulo State, four for Brazil, one for the western Atlantic and one for the South Atlantic Ocean, in addition to the possible occurrence of one new species of Osmundea (Rhodomelaceae) and one new genus belonging to Ceramiaceae. The taxonomic composition of the macroalgae had a direct correlation with the arrival of the SACW in the summer-fall season. The SACW generated a strong thermocline and increased the supply of nutrients in the water column. Hydrodynamic and dispersion modeling analyses suggested that the Port of Santos influenced the composition of the LSMSP phycoflora.