20 resultados para Thermal induced enhancement

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached-deodorized (RBD) soybean oil. The oxidative stability of the oil samples was determined using the Oil Stability Index method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. All extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Oil Stability Index method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT. The present study confirmed that gamma radiation did not affect the peanut skin extracts' antioxidative properties when added to soybean oil.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Discotic molecules comprising a rigid aromatic core and flexible side chains have been promisingly applied in OLEDs as self-organizing organic semiconductors. Due to their potentially high charge carrier mobility along the columns, device performance can be readily improved by proper alignment of columns throughout the bulk. In the present work, the charge mobility was increased by 5 orders of magnitude due to homeotropic columnar ordering induced by the boundary interfaces during thermal annealing in the mesophase. State-of-the-art diodes were fabricated using spin-coated films whose homeotropic alignment with formation of hexagonal germs was observed by polarizing optical microscopy. The photophysical properties showed drastic changes at the mesophase-isotropic transition, which is supported by the gain of order observed by X-ray diffraction. The electrical properties were investigated by modeling the current−voltage characteristics by a space-charge-limited current transport with a field dependent mobility.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The optoelectronic properties of InAs/GaAs quantum dots can be tuned by rapid thermal annealing. In this study, the morphology change of InAs/GaAs quantum dots layers induced by rapid thermal annealing was investigated at the atomic-scale by cross-sectional scanning tunneling microscopy. Finite elements calculations that model the outward relaxation of the cleaved surface were used to determine the indium composition profile of the wetting layer and the quantum dots prior and post rapid thermal annealing. The results show that the wetting layer is broadened upon annealing. This broadening could be modeled by assuming a random walk of indium atoms. Furthermore, we show that the stronger strain gradient at the location of the quantum dots enhances the intermixing. Photoluminescence measurements show a blueshift and narrowing of the photoluminescence peak. Temperature dependent photoluminescence measurements show a lower activation energy for the annealed sample. These results are in agreement with the observed change in morphology. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4770371]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the control of Au nanoparticle (NP) formation by using shaped 30 fs pulses, in a solution containing HAuCl4 and chitosan. By using a sinusoidal spectral phase, a periodic train of pulses is generated. When the period of the pulse train matches certain Raman resonances of chitosan, the reducing agent of the process, an enhancement of the Au NP formation is observed. Theoretical quantum chemical calculations indicate that the outer groups of the chitosan are mostly influenced by low Raman frequencies, which is in reasonably agreement with the experimental data and indicates an enhancement in the Au NP formation as the pulse train period increases (low frequency).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepatic insulin resistance is the major contributor to fasting hyperglycemia in type 2 diabetes. The protein kinase Akt plays a central role in the suppression of gluconeogenesis involving forkhead box O1 (Foxo1) and peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1a), and in the control of glycogen synthesis involving the glycogen synthase kinase beta (GSK3 beta) in the liver. It has been demonstrated that endosomal adaptor protein APPL1 interacts with Akt and blocks the association of Akt with its endogenous inhibitor, tribbles-related protein 3 (TRB3), improving the action of insulin in the liver. Here, we demonstrated that chronic exercise increased the basal levels and insulin-induced Akt serine phosphorylation in the liver of diet-induced obese mice. Endurance training was able to increase APPL1 expression and the interaction between APPL1 and Akt. Conversely, training reduced both TRB3 expression and TRB3 and Akt association. The positive effects of exercise on insulin action are reinforced by our findings that showed that trained mice presented an increase in Foxo1 phosphorylation and Foxo1/PGC-1a association, which was accompanied by a reduction in gluconeogenic gene expressions (PEPCK and G6Pase). Finally, exercised animals demonstrated increased at basal and insulin-induced GSK3 beta phosphorylation levels and glycogen content at 24?h after the last session of exercise. Our findings demonstrate that exercise increases insulin action, at least in part, through the enhancement of APPL1 and the reduction of TRB3 expression in the liver of obese mice, independently of weight loss. J. Cell. Physiol. 227: 29172926, 2012. (C) 2011 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work reports on the thermo-optical study of germanate thin films doped with Au and Ag nanoparticles. Transmission Electron Microscopy images, UV-visible absorption and Micro-Raman scattering evidenced the presence of nanoparticles and the formation of collective excitations, the so called surface plasmons. Moreover, the effects of the metallic nanoparticles in the thermal properties of the films were observed. The thermal lens technique was proposed to evaluate the Thermal Diffusivity (D) of the samples. It furnishes superficial spatial resolution of about 100 mu m, so it is appropriate to study inhomogeneous samples. It is shown that D may change up to a factor 3 over the surface of a film because of the differences in the nanoparticles concentration distribution. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Thyroid hormones (THs) are known to regulate protein synthesis by acting at the transcriptional level and inducing the expression of many genes. However, little is known about their role in protein expression at the post-transcriptional level, even though studies have shown enhancement of protein synthesis associated with mTOR/p70S6K activation after triiodo-l-thyronine (T3) administration. On the other hand, the effects of TH on translation initiation and polypeptidic chain elongation factors, being essential for activating protein synthesis, have been poorly explored. Therefore, considering that preliminary studies from our laboratory have demonstrated an increase in insulin content in INS-1E cells in response to T3 treatment, the aim of the present study was to investigate if proteins of translational nature might be involved in this effect. Methods: INS-1E cells were maintained in the presence or absence of T3 (10(-6) or 10(-8) M) for 12 hours. Thereafter, insulin concentration in the culture medium was determined by radioimmunoassay, and the cells were processed for Western blot detection of insulin, eukaryotic initiation factor 2 (eIF2), p-eIF2, eIF5A, EF1A, eIF4E binding protein (4E-BP), p-4E-BP, p70S6K, and p-p70S6K. Results: It was found that, in parallel with increased insulin generation, T3 induced p70S6K phosphorylation and the expression of the translational factors eIF2, eIF5A, and eukaryotic elongation factor 1 alpha (eEF1A). In contrast, total and phosphorylated 4E-BP, as well as total p70S6K and p-eIF2 content, remained unchanged after T3 treatment. Conclusions: Considering that (i) p70S6K induces S6 phosphorylation of the 40S ribosomal subunit, an essential condition for protein synthesis; (ii) eIF2 is essential for the initiation of messenger RNA translation process; and (iii) eIF5A and eEF1A play a central role in the elongation of the polypeptidic chain during the transcripts decoding, the data presented here lead us to suppose that a part of T3-induced insulin expression in INS-1E cells depends on the protein synthesis activation at the post-transcriptional level, as these proteins of the translational machinery were shown to be regulated by T3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a comprehensive experimental and theoretical investigation of the thermodynamic properties: specific heat, magnetization, and thermal expansion in the vicinity of the field-induced quantum critical point (QCP) around the lower critical field H-c1 approximate to 2 T in NiCl2-4SC(NH2)(2). A T-3/2 behavior in the specific heat and magnetization is observed at very low temperatures at H = H-c1, which is consistent with the universality class of Bose-Einstein condensation of magnons. The temperature dependence of the thermal expansion coefficient at H-c1 shows minor deviations from the expected T-1/2 behavior. Our experimental study is complemented by analytical calculations and quantum Monte Carlo simulations, which reproduce nicely the measured quantities. We analyze the thermal and the magnetic Gruneisen parameters, which are ideal quantities to identify QCPs. Both parameters diverge at H-c1 with the expected T-1 power law. By using the Ehrenfest relations at the second-order phase transition, we are able to estimate the pressure dependencies of the characteristic temperature and field scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the effect of solvent-induced conformational changes of poly(3,6-phenanthrene) on their two-photon absorption (2PA). Such effect was studied employing the wavelength-tunable femtosecond Z-scan technique and modeled using the sum-over-essential states approach. We observed a strong reduction of the 2PA cross-section when the sample was prepared in hexane (poor solvent) in comparison to chloroform (good solvent), which is related to the conformation adopted by the polymer in each case. In chloroform it adopts a random coil conformation, as opposed to the one-handed helix conformation in hexane. Our results pointed out that the coil to helix conformation change decreases the degree of molecular planarity of the polymer pi-conjugated backbone, which is primarily responsible for their optical nonlinearity, contributing to diminishing the effective transition dipole moments and, consequently, the 2PA cross-section. Moreover, by studying the nonlinear response with different light polarization, we showed that, although the solvent-induced conformational change does not alter the molecular symmetry of the polymer, it modifies considerably the direction of the transition dipole moments between the excited states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The symptoms of lumbar disc herniation, such as low back pain and sciatica, have been associated with local release of cytokines following the inflammatory process induced by the contact of the nucleus pulposus (NP) with the spinal nerve. Using an animal experimental model of intervertebral disc herniation and behavioral tests to evaluate mechanical (electronic von Frey test) and thermal (Hargreaves Plantar test) hyperalgesia in the hind paw of rats submitted to the surgical model, this study aimed to detect in normal intervertebral disc the cytokines known to be involved in the mechanisms of inflammatory hyperalgesia, to observe if previous exposure of the intervertebral disc tissue to specific antibodies could affect the pain behavior (mechanical and thermal hyperalgesia) induced by the NP, and to observe the influence of the time of contact of the NP with the fifth lumbar dorsal root ganglion (L5-DRG) in the mechanical and thermal hyperalgesia. The cytokines present at highest concentrations in the rat NP were TNF-alpha, IL-1 beta and CINC-1. Rats submitted to the disc herniation experimental model, in which a NP from the sacrococcygeal region is deposited over the right L5-DRG, showed increased mechanical and thermal hyperalgesia that lasted at least 7 weeks. When the autologous NP was treated with antibodies against the three cytokines found at highest concentrations in the NP (TNF-alpha, IL-1 beta and CINC-1), there was decrease in both mechanical and thermal hyperalgesia in different time points, suggesting that each cytokine may be important for the hyperalgesia in different steps of the inflammatory process. The surgical remotion of the NP from herniated rats 1 week after the implantation reduced the hyperalgesia to the level similar to the control group. This reduction in the hyperalgesia was also observed in the group that had the NP removed 3 weeks after the implantation, although the intensity of the hyperalgesia did not decreased totally. The removal of the NP after 5 weeks did not changed the hyperalgesia observed in the hind paw, which suggests that the longer the contact of the NP with the DRG, the greater is the possibility of development of chronic pain. Together our results indicate that specific cytokines released during the inflammatory process induced by the herniated intervertebral disc play fundamental role in the development of the two modalities of hyperalgesia (mechanical and thermal) and that the maintenance of this inflammation may be the most important point for the chronification of the pain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brown adipose tissue (BAT) is predominantly regulated by the sympathetic nervous system (SNS) and the adrenergic receptor signaling pathway. Knowing that a mouse with triple beta-receptor knockout (KO) is cold intolerant and obese, we evaluated the independent role played by the beta(1) isoform in energy homeostasis. First, the 30 min i.v. infusion of norepinephrine (NE) or the beta(1) selective agonist dobutamine (DB) resulted in similar interscapular BAT (iBAT) thermal response in WT mice. Secondly, mice with targeted disruption of the beta(1) gene (KO of beta(1) adrenergic receptor (beta 1KO)) developed hypothermia during cold exposure and exhibited decreased iBAT thermal response to NE or DB infusion. Thirdly, when placed on a high-fat diet (HFD; 40% fat) for 5 weeks, beta 1KO mice were more susceptible to obesity than WT controls and failed to develop diet-induced thermogenesis as assessed by BAT Ucp1 mRNA levels and oxygen consumption. Furthermore, beta 1KO mice exhibited fasting hyperglycemia and more intense glucose intolerance, hypercholesterolemia, and hypertriglyceridemia when placed on the HFD, developing marked non-alcoholic steatohepatitis. In conclusion, the beta(1) signaling pathway mediates most of the SNS stimulation of adaptive thermogenesis. Journal of Endocrinology (2012) 214, 359-365

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports the spectroscopic study on the structural differences of thermally induced cross-linking segments in polyaniline in its emeraldine salt (PANI-ES) and base (PANI-EB) forms. Casting films of PANI-ES (ES-film) and PANI-EB (EB-film) were prepared and heated at 150 degrees C under atmospheric air for 30 min. Raman spectra excited at 632.8 nm of heated ES-film presented the characteristic bands of phenazine-like structures at 1638, 1392, and 575 cm(-1), whereas EB-film showed lower relative intensities for these bands. The lower content of phenazine-like segments in heated EB-film is related to residual polaronic segments from preparation procedures, as revealed by Raman. This statement was confirmed by a sequence of thermal and doping experiments in both films. Quantum-chemical calculations by density functional theory (DFT) and time-dependent density functional theory (TD-DFT) showed that the phenazine-like structure presents the intense Raman band at 1350 cm(-1) due to heterocycle breathing mode, and the non-phenazine-like structure (substituted hydrophenazine-type) presents higher energy for HOMO-LUMO transition, indicating the lack of conjugation in the heterocycle compared with the phenazine-like structure. According to experimental and theoretical data reported here, it is proposed that only thermally treated PANI-ES presents phenazine-like rings, whereas PANI-EB presents heterocyclic non-aromatic structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 18 kDa translocator protein (TSPO) also known as the peripheral benzodiazepine receptor (PBR), mediates the transportation of cholesterol and anions from the outer to the inner mitochondrial membrane in different cells types. Although recent evidences indicate a potential role for TSPO in the development of inflammatory processes, the mechanisms involved have not been elucidated. The present study investigated the ability of the specific TSPO ligands, the isoquinoline carboxamide PK11195 and benzodiazepine Ro5-4864, on neutrophil recruitment promoted by the N-formylmethionyl-leucyl-phenylalanine peptide (fMLP), an agonist of G-protein coupled receptor (GPCR). Pre-treatment with Ro5-4864 abrograted fMLP-induced leukocyte-endothelial interactions in mesenteric postcapillary venules in vivo. Moreover, in vitro Ro5-4864 treatment prevented fMLP-induced: (i) L-selectin shedding and overexpression of PECAM-1 on the neutrophil cell surface; (ii) neutrophil chemotaxis and (iii) enhancement of intracellular calcium cations (iCa(+2)). Intriguingly, the two latter effects were augmented by cell treatment with PK11195. An allosteric agonist/antagonist relation may be suggested, as the effects of Ro5-4864 on fMLP-stimulated neutrophils were reverted by simultaneous treatment with PK11195. Taken together, these data highlight TSPO as a modulator of pathways of neutrophil adhesion and locomotion induced by GPCR, connecting TSPO actions and the onset of an innate inflammatory response. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports evidence of the induced migration of Mn2+ ions in Cd(1-x)MnxS nanocrystals (NCs) by selecting a specific thermal treatment for each sample. The growth and characterization of these magnetic dots were investigated by atomic force microscopy (AFM), optical absorption (OA), and electronic paramagnetic resonance (EPR) techniques. The comparison of experimental and simulated EPR spectra confirms the incorporation of Mn2+ ions both in the core and at the dot surface regions. The thermal treatment of a magnetic sample, via selected annealing temperature and/or time, affects the fine and hyperfine interaction constants which modify the shape and the intensity of the EPR transition spectrum. The identification of these changes has allowed tracing the magnetic ion migration from core to surface regions of a dot as well as inferring the local density of the magnetic impurity ions. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasticized natural macromolecules-based polymer electrolyte samples were prepared and characterized. The plasticization of chitosonium acetate with glycerol increased the ionic conductivity value from 3.0 x 10(-7) S/cm to 1.1 x 10(-5) S/cm. The conductivity temperature relationship of the samples exhibits either VTF or Arrhenius type depending on the glycerol concentration in the sample. The dielectric studies evidencing the relaxation process in the plasticized sample at low frequency region are due to the electric polarization effect. Moreover, the samples were transparent in the Vis region, showed thermal stability up to 160 degrees C and good surface uniformity.