21 resultados para Thermal convection Rayleigh-Bénard plume energy cascade Kolmogorov equation

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the partial pressure of carbon dioxide (CO2) on the thermal decomposition process of a calcite (CI) and a dolomite (DP) is investigated in this paper using a thermogravimetric analyser. The tests were non-isothermal at five different heating rates in dynamic atmosphere of air with 0% and 15% carbon dioxide (CO2). In the atmosphere without CO2, the average activation energies (E-alpha) were 197.4 kJ mol(-1) and 188.1 kJ mol(-1) for CI and DP, respectively. For the DP with 15% CO2, two decomposition steps were observed, indicating a change of mechanism. The values of E-alpha for 15% CO2 were 378.7 kJ mol(-1) for the CI, and 299.8 kJ mol(-1) (first decomposition) and 453.4 kJ mol(-1) (second decomposition) for the DP, showing that the determination of E-alpha for DP should in this case be considered separately in those two distinct regions. The results obtained in this study are relevant to understanding the behaviour changes in the thermal decomposition of limestones with CO2 partial pressure when applied to technologies, such as carbon capture and storage (CCS), in which carbon dioxide is present in high concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rayleigh optical activities of small hydrogen-bonded methanol clusters containing two to five molecules are reported. For the methanol trimer, tetramer, and pentamer both cyclic and linear structures are considered. After the geometry optimizations, the dipole moments and the dipole polarizabilities (mean, interaction, and anisotropic components) are calculated using HF, MP2 and DFT (B3LYP, B3P86 and BH&HLYP) with aug-cc-pVDZ extended basis set. The polarizabilities are used to analyse the depolarization ratios and the Rayleigh scattering activities. The variations in the activity and in the depolarization for Rayleigh scattered radiation with the increase in the cluster size for both cyclic and linear structures are analysed.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Exergetic analysis can provide useful information as it enables the identification of irreversible phenomena bringing about entropy generation and, therefore, exergy losses (also referred to as irreversibilities). As far as human thermal comfort is concerned, irreversibilities can be evaluated based on parameters related to both the occupant and his surroundings. As an attempt to suggest more insights for the exergetic analysis of thermal comfort, this paper calculates irreversibility rates for a sitting person wearing fairly light clothes and subjected to combinations of ambient air and mean radiant temperatures. The thermodynamic model framework relies on the so-called conceptual energy balance equation together with empirical correlations for invoked thermoregulatory heat transfer rates adapted for a clothed body. Results suggested that a minimum irreversibility rate may exist for particular combinations of the aforesaid surrounding temperatures. By separately considering the contribution of each thermoregulatory mechanism, the total irreversibility rate rendered itself more responsive to either convective or radiative clothing-influenced heat transfers, with exergy losses becoming lower if the body is able to transfer more heat (to the ambient) via convection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study, in a d-dimensional space-time, the nonanalyticity of the thermal free energy in the scalar phi(4) theory as well as in QED. We find that the infrared divergent contributions induce, when d is even, a nonanalyticity in the coupling alpha of the form (alpha)((d-1)/2) whereas when d is odd the nonanalyticity is only logarithmic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an analysis of the impact of the lightning overvoltages on the operational performance of the energized shield wire line technology (SWL) implemented in two locations of the State of Rondonia, Brazil. The analysis covers the periods of 1996 to 2000 (SWL Jaru) and 1997 to 2002 (SWL Itapua do Oeste), and shows that lightning is responsible for most of the system outages. The paper describes the satisfactory results achieved with the system, showing that the isolation and energization of the shield wires does not deteriorate the lightning performance of the 230 kV transmission lines. Comparisons between the performances of the SWL technology, conventional 34.5 kV lines, and thermal power plants in operation in the same region are also presented. The results demonstrate the technical and economical viability of the SWL technology and show that its application can lead to a postponement of investments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past few decades detailed observations of radio and X-ray emission from massive binary systems revealed a whole new physics present in such systems. Both thermal and non-thermal components of this emission indicate that most of the radiation at these bands originates in shocks. O and B-type stars and WolfRayet (WR) stars present supersonic and massive winds that, when colliding, emit largely due to the freefree radiation. The non-thermal radio and X-ray emissions are due to synchrotron and inverse Compton processes, respectively. In this case, magnetic fields are expected to play an important role in the emission distribution. In the past few years the modelling of the freefree and synchrotron emissions from massive binary systems have been based on purely hydrodynamical simulations, and ad hoc assumptions regarding the distribution of magnetic energy and the field geometry. In this work we provide the first full magnetohydrodynamic numerical simulations of windwind collision in massive binary systems. We study the freefree emission characterizing its dependence on the stellar and orbital parameters. We also study self-consistently the evolution of the magnetic field at the shock region, obtaining also the synchrotron energy distribution integrated along different lines of sight. We show that the magnetic field in the shocks is larger than that obtained when the proportionality between B and the plasma density is assumed. Also, we show that the role of the synchrotron emission relative to the total radio emission has been underestimated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal treatment (thermal rectification) is a process in which technological properties of wood are modified using thermal energy, the result of Which is often value-added wood. Thermally treated wood takes on similar color shades to tropical woods and offers considerable resistance to destructive microorganisms and climate action, in addition to having high dimensional stability and low hygroscopicity. Wood samples of Eucalyptus grandis were subjected to various thermal treatments, as performed in presence (140 degrees C; 160 degrees C; 180 degrees C) or in absence of oxygen (160 degrees C; 180 degrees C; 200 degrees C) inside a thermal treatment chamber, and then studied as to their chemical characteristics. Increasing the maximum treatment temperatures led to a reduction in the holocellulose content of samples as a result of the degradation and volatilization of hemicelluloses, also leading to an increase in the relative lignin content. Except for glucose, all monosaccharide levels were found to decrease in samples after the thermal treatment at a maximum temperature of 200 degrees C. The thermal treatment above 160 degrees C led to increased levels of total extractives in the wood samples, probably ascribed to the emergence of low molecular weight substances as a result of thermal degradation. Overall, it was not possible to clearly determine the effect of presence or absence of oxygen in the air during thermal treatment on the chemical characteristics of the relevant wood samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We calculate the relic abundance of mixed axion/neutralino cold dark matter which arises in R-parity conserving supersymmetric (SUSY) models wherein the strong CP problem is solved by the Peccei-Quinn (PQ) mechanism with a concommitant axion/saxion/axino supermultiplet. By numerically solving the coupled Boltzmann equations, we include the combined effects of 1. thermal axino production with cascade decays to a neutralino LSP, 2. thermal saxion production and production via coherent oscillations along with cascade decays and entropy injection, 3. thermal neutralino production and re-annihilation after both axino and saxion decays, 4. gravitino production and decay and 5. axion production both thermally and via oscillations. For SUSY models with too high a standard neutralino thermal abundance, we find the combined effect of SUSY PQ particles is not enough to lower the neutralino abundance down to its measured value, while at the same time respecting bounds on late-decaying neutral particles from BBN. However, models with a standard neutralino underabundance can now be allowed with either neutralino or axion domination of dark matter, and furthermore, these models can allow the PQ breaking scale f(a) to be pushed up into the 10(14) - 10(15) GeV range, which is where it is typically expected to be in string theory models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The success of magnetic hyperthermia cancer treatments rely strongly on the magnetic properties of the nanoparticles and their intricate dependence on the externally applied field. This is particularly more so as the response departs from the low field linear regime. In this paper we introduce a new parameter, referred to as the efficiency in converting electromagnetic energy into thermal energy, which is shown to be remarkably useful in the analysis of the system response, especially when the power loss is investigated as a function of the applied field amplitude. Using numerical simulations of dynamic hysteresis, through the stochastic Landau-Lifshitz model, we map in detail the efficiency as a function of all relevant parameters of the system and compare the results with simple-yet powerful-predictions based on heuristic arguments about the relaxation time. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4705392]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sugarcane bagasse cellulose was subjected to the extremely low acid (ELA) hydrolysis in 0.07% H2SO4 at 190, 210 and 225 degrees C for various times. The cellulose residues from this process were characterized by TGA, XRD, GPC, FIR and SEM. A kinetic study of thermal decomposition of the residues was also carried out, using the ASTM and Kissinger methods. The thermal studies revealed that residues of cellulose hydrolyzed at 190, 210 and 225 degrees C for 80,40 and 8 min have initial decomposition temperature and activation energy for the main decomposition step similar to those of Avicel PH-101. XRD studies confirmed this finding by showing that these cellulose residues are similar to Avicel in crystallinity index and crystallite size in relation to the 110 and 200 planes. FTIR spectra revealed no significant changes in the cellulose chemical structure and analysis of SEM micrographs demonstrated that the particle size of the cellulose residues hydrolyzed at 190 and 210 degrees C were similar to that of Avicel. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exergy analysis is applied to assess the energy conversion processes that take place in the human body, aiming at developing indicators of health and performance based on the concepts of exergy destroyed rate and exergy efficiency. The thermal behavior of the human body is simulated by a model composed of 15 cylinders with elliptical cross section representing: head, neck, trunk, arms, forearms, hands, thighs, legs, and feet. For each, a combination of tissues is considered. The energy equation is solved for each cylinder, being possible to obtain transitory response from the body due to a variation in environmental conditions. With this model, it is possible to obtain heat and mass flow rates to the environment due to radiation, convection, evaporation and respiration. The exergy balances provide the exergy variation due to heat and mass exchange over the body, and the exergy variation over time for each compartments tissue and blood, the sum of which leads to the total variation of the body. Results indicate that exergy destroyed and exergy efficiency decrease over lifespan and the human body is more efficient and destroys less exergy in lower relative humidities and higher temperatures. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A gene encoding a-L-arabinofuranosidase (abfA) from Aspergillus niveus was identified, cloned, and successfully expressed in Aspergillus nidulans. Based on amino acid sequence comparison, the 88.6 kDa enzyme could be assigned to the GH family 51. The characterization of the purified recombinant AbfA revealed that the enzyme was active at a limited pH range (pH 4.0-5.0) and an optimum temperature of 70 degrees C. The AbfA was able to hydrolyze arabinoxylan, xylan from birchwood, debranched arabinan, and 4-nitrophenyl arabinofuranoside. Synergistic reactions using both AbfA and endoxylanase were also assessed. The highest degree of synergy was obtained after the sequential treatment of the substrate with endoxylanase, followed by AbfA, which was observed to release noticeably more reducing sugars than that of either enzyme acting individually. The immobilization of AbfA was performed via ionic adsorption onto various supports: agarose activated by polyethyleneimine polymers, cyanogen bromide activated Sepharose, DEAE-Sepharose, and Sepharose-Q The Sepharose-Q derivative remained fully active at pH 5 after 360 min at 60 degrees C, whereas the free AbfA was inactivated after 60 min. A synergistic effect of arabinoxylan hydrolysis by AbfA immobilized in Sepharose-Q and endoxylanase immobilized in glyoxyl agarose was also observed. The stabilization of arabinofuranosidases using immobilization tools is a novel and interesting topic. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mach number and thermal effects on the mechanisms of sound generation and propagation are investigated in spatially evolving two-dimensional isothermal and non-isothermal mixing layers at Mach number ranging from 0.2 to 0.4 and Reynolds number of 400. A characteristic-based formulation is used to solve by direct numerical simulation the compressible Navier-Stokes equations using high-order schemes. The radiated sound is directly computed in a domain that includes both the near-field aerodynamic source region and the far-field sound propagation. In the isothermal mixing layer, Mach number effects may be identified in the acoustic field through an increase of the directivity associated with the non-compactness of the acoustic sources. Baroclinic instability effects may be recognized in the non-isothermal mixing layer, as the presence of counter-rotating vorticity layers, the resulting acoustic sources being found less efficient. An analysis based on the acoustic analogy shows that the directivity increase with the Mach number can be associated with the emergence of density fluctuations of weak amplitude but very efficient in terms of noise generation at shallow angle. This influence, combined with convection and refraction effects, is found to shape the acoustic wavefront pattern depending on the Mach number.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this paper is to present an analysis of a segmented weir sieve-tray distillation column for a 17.58 kW (5 TR) ammonia/water absorption refrigeration cycle. Balances of mass and energy were performed based on the method of Ponchon-Savarit, from which it was possible to determine the ideal number of trays. The analysis showed that four ideal trays were adequate for that small absorption refrigeration system having the feeding system to the column right above the second tray. It was carried out a sensitivity analysis of the main parameters. Vapor and liquid pressure drop constraint along with ammonia and water mass flow ratios defined the internal geometrical sizes of the column, such as the column diameter and height, as well as other designing parameters. Due to the lack of specific correlations, the present work was based on practical correlations used in the petrochemical and beverage production industries. The analysis also permitted to obtain the recommended values of tray spacing in order to have a compact column. The geometry of the tray turns out to be sensitive to the charge of vapor and, to a lesser extent, to the load of the liquid, being insensible to the diameter of tray holes. It was found a column efficiency of 50%. Finally, the paper presents some recommendations in order to have an optimal geometry for a compact size distillation column. (c) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to assess the influence of Er:YAG laser pulse repetition rate on the thermal alterations occurring during laser ablation of sound and demineralized primary dentin. The morphological changes at the lased areas were examined by scanning electronic microscopy (SEM). To this end, 60 fragments of 30 sound primary molars were selected and randomly assigned to two groups (n = 30); namely A sound dentin (control) and B demineralized dentin. Each group was divided into three subgroups (n = 10) according to the employed laser frequencies: I4 Hz; II6 Hz, and III10 Hz. Specimens in group B were submitted to a pH-cycling regimen for 21 consecutive days. The irradiation was performed with a 250 mJ pulse energy in the noncontact and focused mode, in the presence of a fine water mist at 1.5 mL/min, for 15 s. The measured temperature was recorded by type K thermocouples adapted to the dentin wall relative to the pulp chamber. Three samples of each group were analyzed by SEM. The data were submitted to the nonparametric Kruskal-Wallis test and to qualitative SEM analysis. The results revealed that the temperature increase did not promote any damage to the dental structure. Data analysis demonstrated that in group A, there was a statistically significant difference among all the subgroups and the temperature rise was directly proportional to the increase in frequency. In group B, there was no difference between subgroup I and II in terms of temperature. The superficial dentin observed by SEM displayed irregularities that augmented with rising frequency, both in sound and demineralized tissues. In conclusion, temperature rise and morphological alterations are directly related to frequency increment in both demineralized and sound dentin. Microsc. Res. Tech., 2011. (c) 2011 Wiley Periodicals, Inc.