12 resultados para Textures of Optical Flow
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Oxygen-deficient TiO2 films with enhanced visible and near-infrared optical absorption have been deposited by reactive sputtering using a planar diode radio frequency magnetron configuration. It is observed that the increase in the absorption coefficient is more effective when the O-2 gas supply is periodically interrupted rather than by a decrease of the partial O-2 gas pressure in the deposition plasma. The optical absorption coefficient at 1.5 eV increases from about 1 x 10(2) cm(-1) to more than 4 x 10(3) cm(-1) as a result of the gas flow discontinuity. A red-shift of similar to 0.24 eV in the optical absorption edge is also observed. High resolution transmission electron microscopy with composition analysis shows that the films present a dense columnar morphology, with estimated mean column width of 40nm. Moreover, the interruptions of the O-2 gas flow do not produce detectable variations in the film composition along its growing direction. X-ray diffraction and micro-Raman experiments indicate the presence of the TiO2 anatase, rutile, and brookite phases. The anatase phase is dominant, with a slight increment of the rutile and brookite phases in films deposited under discontinued O-2 gas flow. The increase of optical absorption in the visible and near-infrared regions has been attributed to a high density of defects in the TiO2 films, which is consistent with density functional theory calculations that place oxygen-related vacancy states in the upper third of the optical bandgap. The electronic structure calculation results, along with the adopted deposition method and experimental data, have been used to propose a mechanism to explain the formation of the observed oxygen-related defects in TiO2 thin films. The observed increase in sub-bandgap absorption and the modeling of the corresponding changes in the electronic structure are potentially useful concerning the optimization of efficiency of the photocatalytic activity and the magnetic doping of TiO2 films. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4724334]
Resumo:
Purpose: To investigate the laboratory effect of Er:YAG laser on ablation rate and morphological changes in human enamel and dentin with varying water flow. Methods: 23 human third molars were sectioned in mesio-distal and buccal-lingual directions. The slabs were flattened and weighted on an analytical laboratory balance (control). A 4-mm(2) area was demarcated and the samples were randomly assigned into three groups according to water flow employed during the laser irradiation (1.0, 1.5, and 2.0 mL/minute). An Er:YAG laser was used to ablate enamel (80.22-J/cm(2), 300 mJ/4Hz) and dentin (96.26-J/cm(2), 250 mJ/4Hz). After irradiation, the samples were immersed in distilled water for 1 hour and then weighted again. The final mass was obtained and laser-irradiated substrate mass loss was calculated by the difference between the initial and final mass. Afterwards, specimens were prepared for SEM. Results: Data were submitted to ANOVA and Tukey's test (P< 0.05). It was observed that the 2.0 mL/minute resulted in a higher mass loss, 1.0 mL/minute showed a lower mass loss, and 1.5 mL/minute demonstrated intermediate results (P< 0.05). The increase of water flow promoted less melting areas and cracks. Furthermore, dentin was more ablated than enamel. It may be concluded that the water flow of Er:YAG laser and the substrates affected the ablation rate. Among the tested parameters, 2.0 mL/minute improved the ability of ablation in enamel and dentin, with less morphologic surface alteration. (Am J Dent 20 12;25:332-336).
Resumo:
We present the results of an operational use of experimentally measured optical tomograms to determine state characteristics (purity) avoiding any reconstruction of quasiprobabilities. We also develop a natural way how to estimate the errors (including both statistical and systematic ones) by an analysis of the experimental data themselves. Precision of the experiment can be increased by postselecting the data with minimal (systematic) errors. We demonstrate those techniques by considering coherent and photon-added coherent states measured via the time-domain improved homodyne detection. The operational use and precision of the data allowed us to check purity-dependent uncertainty relations and uncertainty relations for Shannon and Renyi entropies.
Resumo:
Continuous enzymatic interesterification is an alternative to chemical interesterification for lipid modification technology which is economically viable for large scale use. A blend of 70% lard and 30% soybean oil was submitted to continuous enzymatic interesterification in a glass tubular bioreactor at flow rate ranging from 0.5 to 4.5 mL/min. The original mixture and the reaction products obtained were examined to determine melting and crystallization behavior by DSC, and analyzed for regiospecific fatty acid distribution. Continuous enzymatic interesterification changed the mixture, forming a new triacylglycerol composition, verified by DSC curves and variation in enthalpy of melting values. The regiospecific distribution of fatty acids was changed by flow variations in the reactor. In the continuous enzymatic interesterification reaction the flow rate of 4.5 mL/min, was more advantageous than slower flow rates, reducing acyl migration and increasing process productivity. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper deals with the numerical solution of complex fluid dynamics problems using a new bounded high resolution upwind scheme (called SDPUS-C1 henceforth), for convection term discretization. The scheme is based on TVD and CBC stability criteria and is implemented in the context of the finite volume/difference methodologies, either into the CLAWPACK software package for compressible flows or in the Freeflow simulation system for incompressible viscous flows. The performance of the proposed upwind non-oscillatory scheme is demonstrated by solving two-dimensional compressible flow problems, such as shock wave propagation and two-dimensional/axisymmetric incompressible moving free surface flows. The numerical results demonstrate that this new cell-interface reconstruction technique works very well in several practical applications. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Context. Spectrally resolved long-baseline optical/IR interferometry of rotating stars opens perspectives to investigate their fundamental parameters and the physical mechanisms that govern their interior, photosphere, and circumstellar envelope structures. Aims. Based on the signatures of stellar rotation on observed interferometric wavelength-differential phases, we aim to measure angular diameters, rotation velocities, and orientation of stellar rotation axes. Methods. We used the AMBER focal instrument at ESO-VLTI in its high-spectral resolution mode to record interferometric data on the fast rotator Achernar. Differential phases centered on the hydrogen Br gamma line (K band) were obtained during four almost consecutive nights with a continuous Earth-rotation synthesis during similar to 5h/night, corresponding to similar to 60 degrees position angle coverage per baseline. These observations were interpreted with our numerical code dedicated to long-baseline interferometry of rotating stars. Results. By fitting our model to Achernar's differential phases from AMBER, we could measure its equatorial radius R-eq = 11.6 +/- 0.3 R-circle dot, equatorial rotation velocity V-eq = 298 +/- 9 km s(-1), rotation axis inclination angle i = 101.5 +/- 5.2 degrees, and rotation axis position angle (from North to East) PA(rot) = 34.9 +/- 1.6 degrees. From these parameters and the stellar distance, the equatorial angular diameter circle divide(eq) of Achernar is found to be 2.45 +/- 0.09 mas, which is compatible with previous values derived from the commonly used visibility amplitude. In particular, circle divide(eq) and PA(rot) measured in this work with VLTI/AMBER are compatible with the values previously obtained with VLTI/VINCI. Conclusions. The present paper, based on real data, demonstrates the super-resolution potential of differential interferometry for measuring sizes, rotation velocities, and orientation of rotating stars in cases where visibility amplitudes are unavailable and/or when the star is partially or poorly resolved. In particular, we showed that differential phases allow the measurement of sizes up to similar to 4 times smaller than the diffraction-limited angular resolution of the interferometer.
Resumo:
In this work, we considered the flow around two circular cylinders of equal diameter placed in tandem with respect to the incident uniform flow. The upstream cylinder was fixed and the downstream cylinder was completely free to move in the cross-stream direction, with no spring or damper attached to it. The centre-to-centre distance between the cylinders was four diameters, and the Reynolds number was varied from 100 to 645. We performed two- and three-dimensional simulations of this flow using a Spectral/hp element method to discretise the flow equations, coupled to a simple Newmark integration routine that solves the equation of the dynamics of the cylinder. The differences of the behaviours observed in the two- and three-dimensional simulations are highlighted and the data is analysed under the light of previously published experimental results obtained for higher Reynolds numbers.
Resumo:
PURPOSE: To determine whether the improvement in intermediate vision after bilateral implantation of an aspheric multifocal intraocular lens (IOL) with a +3.00 diopter (D) addition (add) occurs at the expense of optical quality compared with the previous model with a +4.00 D add. SETTING: Department of Ophthalmology, University of Sao Paulo, Sao Paulo, Brazil. DESIGN: Prospective randomized double-masked comparative clinical trial. METHODS: One year after bilateral implantation of Acrysof Restor SN6AD1 +3.00 D IOLs or Acrysof Restor SN6AD3 +4.00 D IOLs, optical quality was evaluated by analyzing the in vivo modulation transfer function (MTF) and point-spread function (expressed as Strehl ratio). The Strehl ratio and MTF curve with a 4.0 pupil and a 6.0 mm pupil were measured by dynamic retinoscopy aberrometry. The uncorrected and corrected distance visual acuities at 4 m, uncorrected and distance-corrected near visual acuities at 40 cm, and uncorrected and distance-corrected intermediate visual acuities at 50 cm, 60 cm, and 70 cm were measured. RESULTS: Both IOL groups comprised 40 eyes of 20 patients. One year postoperatively, there were no statistically significant between-group differences in the MTF or Strehl ratio with either pupil size. There were no statistically significant between-group differences in distance or near visual acuity. Intermediate visual acuity was significantly better in the +3.00 D IOL group. CONCLUSION: Results indicate that the improvement in intermediate vision in eyes with the aspheric multifocal +3.00 D add IOL occurred without decreasing optical quality over that with the previous version IOL with a +4.00 D add.
Resumo:
STAR's measurements of directed flow (v(1)) around midrapidity for pi(+/-), K-+/-, K-S(0), p, and (p) over bar in Au + Au collisions at root s(NN) = 200 GeV are presented. A negative v(1) (y) slope is observed for most of produced particles (pi(+/-), K-+/-, K-S(0), p, and (p) over bar). In 5%-30% central collisions, a sizable difference is present between the v(1)(y) slope of protons and antiprotons, with the former being consistent with zero within errors. The v(1) excitation function is presented. Comparisons to model calculations (RQMD, UrQMD, AMPT, QGSM with parton recombination, and a hydrodynamics model with a tilted source) are made. For those models which have calculations of v(1) for both pions and protons, none of them can describe v(1()y) forpions and protons simultaneously. The hydrodynamics model with a tilted source as currently implemented cannot explain the centrality dependence of the difference between the v(1)(y) slopes of protons and antiprotons.
Resumo:
We simulate top-energy Au + Au collisions using ideal hydrodynamics in order to make the first comparison to the complete set of midrapidity flow measurements made by the PHENIX Collaboration. A simultaneous calculation of nu(2), nu(3), nu(4), and the first event-by-event calculation of quadrangular flow defined with respect to the nu(2) event plane (nu(4){Psi(2)}) gives good agreement with measured values, including the dependence on both transverse momentum and centrality. This provides confirmation that the collision system is indeed well described as a quark-gluon plasma with an extremely small viscosity and that correlations are dominantly generated from collective effects. In addition, we present a prediction for nu(5).
Resumo:
PURPOSES: To describe and interpret teachers' opinions about and responsiveness to guidance on optical aids for low vision. METHODS: It was conducted a cross-sectional analytical study. The convenience, non-random sample consisted of 58 teachers from the public school network of the city of Campinas. It was constructed and applied a structured questionnaire, available online at the assessed website. For qualitative data collection it was conducted an exploratory study using the focus group technique. RESULTS: Responses expressed, for the most part, a marked interest in the website, its easiness of access, and the comprehensive nature of the information provided. Most people reported frequent use of the Internet to seek information, and found it easier to access the Internet at home. Among the qualitative aspects of the evaluation, we should mention the perceived importance of the website as a source of information, despite some criticism about the accessibility and reliability of the information found on the Internet. CONCLUSION: Teachers' need for training to deal with visually impaired students and their positive response to advice and information lead to the conclusion that web-based guidelines on the use of optical aids were considered beneficial to ease the understanding of visual impairment and the rehabilitation of the affected subjects.
Resumo:
The aim of this study was to compare the techniques of indirect immunofluorescence assay (IFA) and flow cytometry to clinical and laboratorial evaluation of patients before and after clinical cure and to evaluate the applicability of flow cytometry in post-therapeutic monitoring of patients with American tegumentary leishmaniasis (ATL). Sera from 14 patients before treatment (BT), 13 patients 1 year after treatment (AT), 10 patients 2 and 5 years AT were evaluated. The results from flow cytometry were expressed as levels of IgG reactivity, based on the percentage of positive fluorescent parasites (PPFP). The 1:256 sample dilution allowed us to differentiate individuals BT and AT. Comparative analysis of IFA and flow cytometry by ROC (receiver operating characteristic curve) showed, respectively, AUC (area under curve) = 0.8 (95% CI = 0.64–0.89) and AUC = 0.90 (95% CI = 0.75–0.95), demonstrating that the flow cytometry had equivalent accuracy. Our data demonstrated that 20% was the best cut-off point identified by the ROC curve for the flow cytometry assay. This test showed a sensitivity of 86% and specificity of 77% while the IFA had a sensitivity of 78% and specificity of 85%. The after-treatment screening, through comparative analysis of the technique performance indexes, 1, 2 and 5 years AT, showed an equal performance of the flow cytometry compared with the IFA. However, flow cytometry shows to be a better diagnostic alternative when applied to the study of ATL in the cure criterion. The information obtained in this work opens perspectives to monitor cure after treatment of ATL.