6 resultados para Tetrahydrofuran
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Introduction The phytochemistry of species of the genus Piper has been studied extensively, including Piper solmsianum. However, no studies have addressed the phytochemistry of the sap content of Piper species. Objective To evaluate the transferring of secondary compounds from the saps of P. solmsianum to the honeydew of Edessa meditabunda. Methodology The honeydew of E. meditabunda and saps of P. solmsianum were analysed by GC-MS, H-1-NMR and LC-MS. Results The lignan (-)-grandisin and the phenylpropanoid (E)-isoelemicin were detected in both saps of P. solmsianum and honeydew of E. meditabunda. Conclusion Analysis of honeydew secreted by the sap-sucking insect E. meditabunda indicated that (-)-grandisin and (E)-isoelemicin are absorbed from the phloem of Piper solmsianum. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
Antioxidant activity and hepatoprotective properties of the aqueous extract and tetrahydrofuran-extracted phenolic fractions of Halimeda opuntia (Linnaeus) Lamouroux were investigated in rats with chemically induced liver injury. Total polyphenols were determined by using the Folin-Ciocalteau reagent. Liver damage was induced by CCl4 and assessed by a histological technique. Reverse transcription/polymerase chain reaction (RT/PCR) analysis showed increased superoxide dismutase (SOD) and catalase (CAT) gene expression and activities in the group treated with free phenolic acid (FPA) fractions of H. opuntia, suggesting inducing effects on both enzymes. In addition, rats treated with FPA fractions displayed lower liver thiobarbituric acid reactive substance (TBARS) levels than those observed for rats in the CCl4-treated group. These data suggest that the phenolic fractions from H. opuntia may protect the liver against oxidative stress-inducing effects of chemicals by modulating its antioxidant enzymes and oxidative status.
Resumo:
In the present study the effect of relative humidity (RH) during spin-coating process on the structural characteristics of cellulose acetate (CA), cellulose acetate phthalate (C-A-P), cellulose acetate butyrate (CAB) and carboxymethyl cellulose acetate butyrate (CMCAB) films was investigated by means of atomic force microscopy (AFM), ellipsometry and contact angle measurements. All polymer solutions were prepared in tetrahydrofuran (THF), which is a good solvent for all cellulose esters, and used for spin-coating at RH of (35 +/- A 5)%, (55 +/- A 5)% or (75 +/- A 5)%. The structural features were correlated with the molecular characteristics of each cellulose ester and with the balance between surface energies of water and THF and interface energy between water and THF. CA, CAB, CMCAB and C-A-P films spin-coated at RH of (55 +/- A 5)% were exposed to THF vapor during 3, 6, 9, 60 and 720 min. The structural changes on the cellulose esters films due to THF vapor exposition were monitored by means of AFM and ellipsometry. THF vapor enabled the mobility of cellulose esters chains, causing considerable changes in the film morphology. In the case of CA films, which are thermodynamically unstable, dewetting was observed after 6 min exposure to THF vapor. On the other hand, porous structures observed for C-A-P, CAB and CMCAB turned smooth and homogeneous after only 3 min exposure to THF vapor.
Resumo:
Tetrahydrofuran lignans represent a well-known group of phenolic compounds capable of acting as antiparasitic agents. In the search for new medicines for the treatment of Chagas disease, one promising compound is grandisin which has shown significant activity on trypomastigote forms of Trypanosoma cruzi. In this work, the in vitro metabolism of grandisin was studied in the pig cecum model and by biomimetic phase I reactions, aiming at an ensuing a preclinical pharmacokinetic investigation. Although grandisin exhibited no metabolization by the pig microbiota, one putative metabolite was formed in a biomimetic model using Jacobsen catalyst. The putative metabolite was tested against T. cruzi revealing loss of activity in comparison to grandisin.
Resumo:
Leishmaniasis and Chagas disease are parasitic protozoan infections that affect the poorest population in the world, causing high mortality and morbidity. As a result of highly toxic and long-duration treatments, novel, safe and more efficacious drugs are essential. In this work, the methanol (MeOH) extract from the leaves of Piper malacophyllum (Piperaceae) was fractioned to afford one alkenylphenol, which was characterized as 4-[(3'E)-decenyl]phenol (gibbilimbol B) by spectroscopic methods. Anti-protozoan in vitro assays demonstrated for the first time that Leishmania (L.) infantum chagasi was susceptible to gibbilimbol B. with an in vitro EC50 of 23 mu g/mL against axenic promastigotes and an EC50 of 22 mu g/mL against intracellular amastigotes. Gibbilimbol B was also tested for anti-trypanosomal activity (Trypanosoma cruzi) and showed an EC50 value of 17 mu g/mL against trypomastigotes. To evaluate the cytotoxic parameters, this alkenylphenol was tested in vitro against NCTC cells, showing a CC50 of 59 mu g/mL and absent hemolytic activity at the highest concentration of 75 mu g/mL. Using the fluorescent probe SYTOX Green suggested that the alkenylphenol disrupted the Leishmania plasma membrane upon initial incubation. Further drug design studies aiming at derivatives could be a promising tool for the development of new therapeutic agents for leishmaniasis and Chagas disease. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Several studies on polythiophene gas sensors, based mainly on electrochemical and gravimetric principles can be found in the literature. However, other principles of gas detection, such as optical and thermal, are still little studied. Optical sensing is suitable for remote detection and offers great versatility at low cost. Here,we report on the use of thin films of seven polythiophene derivatives as active layer in optical sensors for the detection of six volatile organic compounds (n-hexane, toluene, tetrahydrofuran, chloroform, dichloromethane and methanol) and water vapor, in concentration range of 500-30,000 ppm. The results showed that it is possible to use different polythiophene derivatives to differentiate VOCs by optical sensing. Differentiation can be performed based on the presence or not of response to an analyte and the sensitivity value of the sensors for the analytes. Another important feature is the lack of the effect of humidity on the response of most films, which could be a major drawback in the application of these sensors. (C) 2011 Elsevier B.V. All rights reserved.