3 resultados para Tetens, Johann Nicolas, 1736-1807.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
OBJECTIVE: The significance of pretransplant, donor-specific antibodies on long-term patient outcomes is a subject of debate. This study evaluated the impact and the presence or absence of donor-specific antibodies after kidney transplantation on short-and long-term graft outcomes. METHODS: We analyzed the frequency and dynamics of pretransplant donor-specific antibodies following renal transplantation from a randomized trial that was conducted from 2002 to 2004 and correlated these findings with patient outcomes through 2009. Transplants were performed against a complement-dependent T-and B-negative crossmatch. Pre- and posttransplant sera were available from 94 of the 118 patients (80%). Antibodies were detected using a solid-phase (Luminex (R)), single-bead assay, and all tests were performed simultaneously. RESULTS: Sixteen patients exhibited pretransplant donor-specific antibodies, but only 3 of these patients (19%) developed antibody-mediated rejection and 2 of them experienced early graft losses. Excluding these 2 losses, 6 of 14 patients exhibited donor-specific antibodies at the final follow-up exam, whereas 8 of these patients (57%) exhibited complete clearance of the donor-specific antibodies. Five other patients developed "de novo'' posttransplant donor-specific antibodies. Death-censored graft survival was similar in patients with pretransplant donor-specific and non-donor-specific antibodies after a mean follow-up period of 70 months. CONCLUSION: Pretransplant donor-specific antibodies with a negative complement-dependent cytotoxicity crossmatch are associated with a risk for the development of antibody-mediated rejection, although survival rates are similar when patients transpose the first months after receiving the graft. Our data also suggest that early posttransplant donor-specific antibody monitoring should increase knowledge of antibody dynamics and their impact on long-term graft outcome.
Resumo:
Centronuclear myopathy (CNM) is a genetically heterogeneous disorder associated with general skeletal muscle weakness, type I fiber predominance and atrophy, and abnormally centralized nuclei. Autosomal dominant CNM is due to mutations in the large GTPase dynamin 2 (DNM2), a mechanochemical enzyme regulating cytoskeleton and membrane trafficking in cells. To date, 40 families with CNM-related DNM2 mutations have been described, and here we report 60 additional families encompassing a broad genotypic and phenotypic spectrum. In total, 18 different mutations are reported in 100 families and our cohort harbors nine known and four new mutations, including the first splice-site mutation. Genotype-phenotype correlation hypotheses are drawn from the published and new data, and allow an efficient screening strategy for molecular diagnosis. In addition to CNM, dissimilar DNM2 mutations are associated with Charcot-Marie-Tooth (CMT) peripheral neuropathy (CMTD1B and CMT2M), suggesting a tissue-specific impact of the mutations. In this study, we discuss the possible clinical overlap of CNM and CMT, and the biological significance of the respective mutations based on the known functions of dynamin 2 and its protein structure. Defects in membrane trafficking due to DNM2 mutations potentially represent a common pathological mechanism in CNM and CMT. Hum Mutat 33: 949-959, 2012. (C) 2012 Wiley Periodicals, Inc.