9 resultados para Temperature in machining

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Last Glacial Maximum simulated sea surface temperature from the Paleo-Climate version of the National Center for Atmospheric Research Coupled Climate Model (NCAR-CCSM) are compared with available reconstructions and data-based products in the tropical and south Atlantic region. Model results are compared to data proxies based on the Multiproxy Approach for the Reconstruction of the Glacial Ocean surface product (MARGO). Results show that the model sea surface temperature is not consistent with the proxy-data in all of the region of interest. Discrepancies are found in the eastern, equatorial and in the high-latitude South Atlantic. The model overestimates the cooling in the southern South Atlantic (near 50 degrees S) shown by the proxy-data. Near the equator, model and proxies are in better agreement. In the eastern part of the equatorial basin the model underestimates the cooling shown by all proxies. A northward shift in the position of the subtropical convergence zone in the simulation suggests a compression or/and an equatorward shift of the subtropical gyre at the surface, consistent with what is observed in the proxy reconstruction. (C) 2008 Elsevier B.V. All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work propounds an inverse method to estimate the heat sources in the transient two-dimensional heat conduction problem in a rectangular domain with convective bounders. The non homogeneous partial differential equation (PDE) is solved using the Integral Transform Method. The test function for the heat generation term is obtained by the chip geometry and thermomechanical cutting. Then the heat generation term is estimated by the conjugated gradient method (CGM) with adjoint problem for parameter estimation. The experimental trials were organized to perform six different conditions to provide heat sources of different intensities. This method was compared with others in the literature and advantages are discussed. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mixed ruthenium(II) complexes trans-[RuCl(2)(PPh(3))(2)(bipy)] (1), trans-[RuCl(2)(PPh(3))(2)(Me(2)bipy)](2), cis-[RuCl(2)(dcype)(bipy)](3), cis-[RuCl(2)(dcype)(Me(2)bipy)](4) (PPh(3) = triphenylphosphine, dcype = 1,2-bis(dicyclohexylphosphino)ethane, bipy = 2,2'-bipyridine, Me(2)bipy = 4,4'-dimethyl-2,2'-bipyridine) were used as precursors to synthesize the associated vinylidene complexes. The complexes [RuCl(=C=CHPh)(PPh(3))(2)(bipy)]PF(6) (5), [RuCl(=C=CHPh)(PPh(3))(2)(Me(2)bipy)]PF(6) (6), [RuCl(=C=CHPh)(dcype)(bipy)]PF(6) (7), [RuCl(=C=CHPh)(dcype)(bipy)]PF(6) (8) were characterized and their spectral, electrochemical, photochemical and photophysical properties were examined. The emission assigned to the pi-pi* excited state from the vinylidene ligand is irradiation wavelength (340, 400, 430 nm) and solvent (CH(2)Cl(2), CH(3)CN, EtOH/MeOH) dependent. The cyclic voltammograms of (6) and (7) show a reversible metal oxidation peak and two successive ligand reductions in the +1.5-(-0.64) V range. The reduction of the vinylidene leads to the formation of the acetylide complex, but due the hydrogen abstraction the process is irreversible. The studies described here suggest that for practical applications such as functional materials, nonlinear optics, building blocks and supramolecular photochemistry. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The in vitro stability of cocaine in horse blood, sheep vitreous humour (VH) and homogenised deer muscle is described. The stability of cocaine in horse blood was of interest because many toxicology laboratories utilise horse blood for the preparation of calibration and check standards and the latter are typically stored during routine use. The storage stability of cocaine in human VH and muscle has not been previously reported. In the absence of blank human VH and muscle, cocaine stability under varying conditions was demonstrated in animal tissues. Blood and VH were stored with and without addition of NaF at room temperature (RT), 4 degrees C and -18 degrees C for 84 days. Muscle homogenates were prepared in water, water/2% NaF, and phosphate buffer (pH 6.0)/2% NaF, and stored for 31 days at RT, 4 degrees C and -18 degrees C. Cocaine stability in human muscle obtained from cocaine positive forensic cases was assessed following storage at -18 degrees C for 13 months. Cocaine and benzoylecgonine (BZE) were extracted using SPE and quantified by GC-MS/MS. Cocaine was stable for 7 days in refrigerated (4 degrees C) horse blood fortified with 1 and 2% NaF. In the absence of NaF, cocaine was not detectable by day 7 in blood stored at RT and 4 degrees C and had declined by 81% following storage at -18 degrees C. At 4 degrees C the rate of cocaine degradation in blood preserved with 2% NaF was significantly slower than with 1% NaF. The stability of cocaine in horse blood appeared to be less than that reported for human blood, probably attributable to the presence of carboxylesterase in horse plasma. Cocaine stored in VH at -18 degrees C was essentially stable for the study period whereas at 4 degrees C concentrations decreased by >50% in preserved and unpreserved VH stored for longer than 14 days. Fluoride did not significantly affect cocaine stability in VH. The stability of cocaine in muscle tissue homogenates significantly exceeded that in blood and VH at every temperature. In preserved and unpreserved samples stored at 4 degrees C and below, cocaine loss did not exceed 2%. The increased stability of cocaine in muscle was attributed to the low initial pH of post-mortem muscle. In tissue from one human case stored for 13 months at -18 degrees C the muscle cocaine concentration declined by only 15% (range: 5-22%). These findings promote the use of human muscle as a toxicological specimen in which cocaine may be detected for longer compared with blood or VH. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Patient discharge from post-anesthetic recovery (PAR) depends, among other factors, on normothermia and the patient's score on the Aldrete-Kroulik index. The objective of this study was to verify the relationship between the Aldrete-Kroulik index and body temperature in patients. This study was performed at the University of Sao Paulo University Hospital. Convenience sampling was used, and the sample consisted of 60 patients of ages between 18 and 60 years who underwent general anesthesia. The patients' body temperature was obtained by tympanic measurement, and the Aldrete-Kroulik index was measured on admission and at discharge from post-anesthetic recovery. The data were processed using SPSS, considering a significance level of 5%, and the Spearman and Wilcoxon tests were applied. In conclusion, no significant correlation was found between the two parameters for discharge.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, we present a theoretical photoluminescence (PL) for p-doped GaAs/InGaAsN nanostructures arrays. We apply a self-consistent method in the framework of the effective mass theory. Solving a full 8 x 8 Kane's Hamiltonian, generalized to treat different materials in conjunction with the Poisson equation, we calculate the optical properties of these systems. The trends in the calculated PL spectra, due to many-body effects within the quasi-two-dimensional hole gas, are analyzed as a function of the acceptor doping concentration and the well width. Effects of temperature in the PL spectra are also investigated. This is the first attempt to show theoretical luminescence spectra for GaAs/InGaAsN nanostructures and can be used as a guide for the design of nanostructured devices such as optoelectronic devices, solar cells, and others.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Corrosion is a relevant issue regarding the problem of biodiesel compatibility with polymers and metals. This work aims to evaluate the influence of the natural light incidence and temperature in the corrosion rate of brass and copper immersed in commercial biodiesel as well as biodiesel degradation after the contact with metallic ions. The characterization of corrosion behavior was performed by weight loss measurements according to ASTM G1 and ASTM G31. The experiments according to ASTM G1 were performed at room temperature in light presence and absence. Experiments were also conducted at 55 degrees C in order to compare with ASTM G31 that is also performed at that temperature. The biodiesel degradation was characterized by water content, oxidation stability, viscosity as well as XRF, IR and Raman spectroscopies. The results of ASTM G1 tests showed that the thickness loss for both metals determined at room temperature is slightly higher when there is light incidence and these values significantly decrease for the highest temperature. The results of ASTM G31 tests indicated that air bubbling along with higher temperature affects mostly immersed samples. Biodiesel in contact with metals shows significant degradation in its properties as evidenced by increasing water content, higher viscosity and lower oxidation stability. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pulse repetition rates and the number of laser pulses are among the most important parameters that do affect the analysis of solid materials by laser induced breakdown spectroscopy, and the knowledge of their effects is of fundamental importance for suggesting analytical strategies when dealing with laser ablation processes of polymers. In this contribution, the influence of these parameters in the ablated mass and in the features of craters was evaluated in polypropylene and high density polyethylene plates containing pigment-based PbCrO4. Surface characterization and craters profile were carried out by perfilometry and scanning electron microscopy. Area, volume and profile of craters were obtained using Taylor Map software. A laser induced breakdown spectroscopy system consisted of a Q-Switched Nd:YAG laser (1064 nm, 5 ns) and an Echelle spectrometer equipped with ICCD detector were used. The evaluated operating conditions consisted of 10, 25 and 50 laser pulses at 1, 5 and 10 Hz, 250 mJ/pulse (85 J cm(-2)), 2 mu s delay time and 6 mu s integration time gate. Differences in the topographical features among craters of both polymers were observed. The decrease in the repetition rate resulted in irregular craters and formation of edges, especially in polypropylene sample. The differences in the topographical features and ablated masses were attributed to the influence of the degree of crystallinity, crystalline melting temperature and glass transition temperature in the ablation process of the high density polyethylene and polypropylene. It was also observed that the intensities of chromium and lead emission signals obtained at 10 Hz were two times higher than at 5 Hz by keeping the number of laser pulses constant. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Size effects on phase stability and phase transitions in technologically relevant materials have received growing attention. Several works reported that metastable phases can be retained at room temperature in nanomaterials, these phases generally corresponding to the high-temperature polymorph of the same material in bulk state. Additionally, size-dependent shifts in solubility limits and/or in the transition temperatures for on heating or on cooling cycles have been observed. ZrO2-Sc2O3 (zirconia-scandia) solid solutions are known to exhibit very high oxygen ion conductivity provided their structure is composed of cubic and/or pseudocubic tetragonal phases. Unfortunately, for solid zirconia-scandia polycrystalline samples with typical micrometrical average crystal sizes, the high-conductivity cubic phase is only stable above 600°C. Depending on composition, three low-conductivity rhombo-hedral phases (β, γ and δ) are stable below 600°C down to room temperature, within the compositional range of interest for SOFCs. In previous investigations, we showed that the rhombohedral phases can be avoided in nanopowders with average crystallite size lower than 35 nm.